• Title/Summary/Keyword: Motor-Generator Set

Search Result 43, Processing Time 0.026 seconds

Development of Tacho Generator for Application of Anti-aircraft Weapon System (대공무기체계 적용을 위한 타코제너레이터 개발)

  • Byun, Kisik;Park, Jun Young;Cho, Sung-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.174-180
    • /
    • 2020
  • This paper presents the development of a tacho generator that is applicable to a DC motor for anti-aircraft weapon systems. In general, devices such as tacho generators and resolvers are used as feedback devices for controlling DC motors. A tacho generator with a wide operating temperature range was developed, which has robust characteristics against shock loads and vibrations according to the operational characteristics of anti-aircraft weapon systems. The target specifications were set based on the requirements of the tacho generator currently in operation. A rotor coupled to the shaft of the motor and a stator coupled to the housing of the motor were then designed and manufactured. The inductance was 31.0 mH, the terminal resistance was 147.7 ohms, and the rotational measurement factor was satisfactory under both normal operation and operating conditions after the maximum speed for the standard of 9.500 ± 0.475 V/krpm. In addition, the environmental suitability of the applied equipment was confirmed through the rate of change in unit temperature, and it was found that the temperature characteristics were all within 0.03 %/℃.

Wind Power System using Doubly-Fed Induction Generator and Matrix Converter (매트릭스컨버터와 이중여자유도발전기를 사용한 풍력발전시스템)

  • Lee, Dong-Geun;Kwon, Gi-Hyun;Han, Byung-Moon;Li, Yu-Long;Choi, Nam-Sup;Choy, Young-Do
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.985-993
    • /
    • 2008
  • This paper proposes a new DFIG(Doubly-Fed Induction Generator) system using matrix converter, which is very effectively used for interconnecting the wind power system to the power grid. The operation of proposed system was verified by computer simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was conformed by experimental works with a laboratory scaled-model of wind power system. The laboratory scaled-model was built using a motor-generator set with vector drive system, and a matrix converter with DSP(Digital Signal Processor). The operation of scaled-model was tested by modeling the specific variable-speed wind turbine using the real wind data in order to make the scaled-model simulate the real wind power system as close as possible. The simulation and experimental results confirm that matrix converter can be applied for the DFIG system.

Analysis of Dynamic Response of 1.5MW DFIG Wind Power Simulator with Real-grid Connection (실 계통 연계 1.5MW급 DFIG 풍력발전 시뮬레이터의 응동특성 분석)

  • Choy, Young-Do;Jeon, Young-Soo;Jeon, Dong-Hoon;Shin, Jeong-Hoon;Kim, Tae-Kyun;Jeong, Byung-Chang
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.4-12
    • /
    • 2009
  • The effect of change in DFIG (doubly-fed wind power generator) rotating speed and active power on the grid was analyzed to understand the characteristics of wind power using the wind power simulator connected to the grid at Gochang Power Quality Test Center. Electric power quality improvement devices (DVR, STATCOM, SSTS) and electric power quality disturbance application devices for 22.9 kV grid are equipped at Gochang Power Quality Test Center. Induction motor and VVVF inverter were used to emulate the blade of a wind power generator, and a simulator for Cage wound induction generator and DFIG was developed. The trial line were assumed to be 20 km and 40 km in length, and variable wind speed pattern was set using wind speed data from Ducjeokdo to verify the power characteristics of the wind power generator according to rotating speed.

  • PDF

Differential Evolution Approach for Performance Enhancement of Field-Oriented PMSMs

  • Yun, Hong Min;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2301-2309
    • /
    • 2018
  • In a field-oriented vector-controlled permanent magnet synchronous motor (PMSM) control system, the d-axis current control loop can offer a free degree of freedom which can be used to improve control performances. However, in the industry the desired d-axis current command is usually set as zero without using the free degree of freedom. This paper proposes a method to use the degree of freedom for control performance improvement. It is assumed that both the inner loop proportional-integral (PI) current controller and the q-axis outer loop PI speed controller are tuned by the well-known tuning rules. This paper gives an optimal d-axis reference current command generator such that some useful performance indexes are minimized and/or a tradeoff between conflicting performance criteria is made. This paper uses a differential evolution algorithm to autotune the parameter values of the optimal d-axis reference current command generator. This paper implements the proposed control system in real time on a Texas Instruments TMS320F28335 floating-point DSP. This paper also gives experimental results showing the practicality and feasibility of the proposed control system, along with simulation results.

Emulation of Variable Wind Speed and Turbulance Effect in a Wind Turbine Simulator (가변 풍속과 터뷸런스를 고려한 가변속 풍력 발전 시스템 시뮬레이터 개발)

  • Song, Seung-Ho;Kim, Dong-Yong;Kim, In-Sun;Kyong, Nam-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.290-296
    • /
    • 2006
  • Control algorithms and implementation issues for a wind turbine simulator are presented for realistic emulation of variable wind characteristics using a lab-scale motor and generator set. When the average wind speed nd turbulence level is given, the torque reference of prime mover is decided through various blocks, such as random wind speed generator, blade characteristic curves, and tower effect compensation. The variable nature of wind can be implemented and tested by not only the computer simulation but also the hardware-in-loop-simulator (HILS). Some application examples of HILS include the development and test of turbine control software for more efficient and stable operation. Feasibility of the proposed simulator has verified by computer simulations and experiment.

  • PDF

Control System of Throttle Actrator for TCS (TCS용 스로틀 액츄에이터 제어 시스템)

  • 송재복;김효준;민덕인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Accurate positioning of a throttle valve is required to implement the traction control system(TCS) which improves acceleration performance in slippery roads. In this research, position control system is developed for the main throttle actuator(MTA) system which uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Digital PID control law is used as basic control algorithm. In order to prevent overshoot and improve accuracy, velocity profiles are generated and implemented whenever the targer throttle angle is given from the TCS controller. Thanks to velocity profiles, the control performance was very good and only one set of PID gains was used to cover the entire operating range. Also, the resolution of position is about 0.4$^{\circ}C$, which is better than that of stepping motor also used as throttle actuator in some products. The response time of the developed system is also fast enough to implement the engine control based TCS algorithm.

  • PDF

DFIG Wind Power System with a DDPWM Controlled Matrix Converter

  • Lee, Ji-Heon;Jeong, Jong-Kyou;Han, Byung-Moon;Choi, Nam-Sup;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.299-306
    • /
    • 2010
  • This paper proposes a new doubly-fed induction generator (DFIG) system using a matrix converter controlled by direct duty ratio pulse-width modulation (DDPWM) scheme. DDPWM is a recently proposed carrier based modulation strategy for matrix converters which employs a triangular carrier and voltage references in a voltage source inverter. By using DDPWM, the matrix converter can directly and effectively generate rotor voltages following the voltage references within the closed control loop. The operation of the proposed DFIG system was verified through computer simulation and experimental works with a hardware simulator of a wind power turbine, which was built using a motor-generator set with vector drive. The simulation and experimental results confirm that a matrix converter with a DDPWM modulation scheme can be effectively applied for a DFIG wind power system.

Development of a Wind Turbine Simulator based on RTDS and MG set (RTDS와 MG set을 이용한 풍력 터빈 시뮬레이터 개발)

  • Jeon, Jin-Hong;Cho, Chang-Hee;Kim, Seul-Ki;Ahn, Jong-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.515-516
    • /
    • 2006
  • 본 논문은 풍속이 변화하는 상황에서 풍력 발전 시스템의 동작을 실시간으로 모의할 수 있는 시뮬레이터의 구성과 실험 결과를 제시한다. 본 논문에서 제시하고자하는 풍력 발전 시스템 시뮬레이터는 실시간 시뮬레이터인 RTDS(Real Time Digital Simulator)와 11kW의 AC 서보 시스템을 포함하는 전동기-발전기 실험 장치(MG set, Motor-Generator Set)로 구현되었다. RTDS는 풍속 모델과 블레이드, 터빈, 발전기를 포함하는 풍력발전 시스템 모델을 실시간으로 모의하며 MG-set은 실시간으로 모의된 풍력 발전 시스템의 물리적 상태를 구현한다. 풍력 발전 시스템 모델의 동작점 궤적과 최대출력점추종(Maximum Power Point Tracking)제어에 의한 풍력 발전 시스템 시뮬레이터의 운전 결과의 제시를 통해 시뮬레이터의 유용성을 검증하였다. 본 논문에서 제시된 시뮬레이터는 상용 실시간 시뮬레이터를 이용하여 간단한 소프트웨어의 수정을 통해 다양한 모델의 풍력 반전 시스템을 모의할 수 있으며 다양한 실험 조건에서 과도상태 및 정상상태 특성 실험이 가능하므로 풍력 발전 시스템의 발전기 특성 평가, 전력 변환 장치의 성능 시험 등에 활용이 가능하다.

  • PDF

DEVELOPMENT OF INVERTER AND POWER CAPACITORS FOR MILD HYBRID VEHICLE (MHV) - TOYOTA "CROWN"

  • Shida, Y.;Kanda, M.;Ohta, K.;Furuta, S.;Ishii, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2003
  • The 42V Mild Hybrid System has been released into market by Toyota for the first time in the world in 2001. The set-up employs an inverter unit to control the motor/generator (MG) electronically. The driving system called such as Toyota Mild Hybrid System (TMHS) has additional new functions to conventional internal combustion engines. When stopping vehicle, the engine stops promptly. When starting vehicle, by releasing the brake pedal MG starts the vehicle at the same time (EV-driving mode). When stepping on the accelerator pedal, or after a given period of time the engine firing occurs and the engine-driving mode starts. When running by motor, the power is supplied to the motor from 36V battery through the inverter. High outputs and instant responses are required for Inverter. At the same time, the compact volume is required to fit into the limited space of the engine room. The compact size and high output are also required to Power Capacitor used for this inverter. The power capacitors has been newly developed, shaped in "flat" type, suitably for the inverter. The points of developments on inverter and power capacitor are described in this paper.his paper.

Modeling and Simulation of Small and Medium-sized Ships for Fuel Reduction Rate Verification (연료 감소율 검증을 위한 중소형 선박의 모델링 및 시뮬레이션)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.914-921
    • /
    • 2022
  • The International Maritime Organization (IMO) has set a goal of reducing ship's carbon dioxide emissions by 70% and greenhouse gas emissions by 50% by 2050 compared to 2008. Shipowners and shipyards are promoting various R&D activities such as LNG propulsion, ammonia propulsion, electric propulsion, CO2 capture, and shaft generators as a way to satisfy this problem. The dual shaft generator has the advantage that it can be directly applied to an existing ship through remodeling. In this paper, the total fuel reduction rate that can be obtained by applying the shaft generator to the existing ship was verified through simulation. For this purpose, the size of the medium-sized ship was defined, and the governor, diesel engine, propeller, torque switch, generator for shaft generator, propulsion motor for shaft generator, and ship model were modeled and simulated.