• Title/Summary/Keyword: Motor neurons

Search Result 176, Processing Time 0.026 seconds

Therapeutic Potential of CKD-504, a Novel Selective Histone Deacetylase 6 Inhibitor, in a Zebrafish Model of Neuromuscular Junction Disorders

  • Jeong, Hui Su;Kim, Hye Jin;Kim, Deok-Ho;Chung, Ki Wha;Choi, Byung-Ok;Lee, Ji Eun
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.231-242
    • /
    • 2022
  • The neuromuscular junction (NMJ), which is a synapse for signal transmission from motor neurons to muscle cells, has emerged as an important region because of its association with several peripheral neuropathies. In particular, mutations in GARS that affect the formation of NMJ result in Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. These disorders are mainly considered to be caused by neuronal axon abnormalities; however, no treatment is currently available. Therefore, in order to determine whether the NMJ could be targeted to treat neurodegenerative disorders, we investigated the NMJ recovery effect of HDAC6 inhibitors, which have been used in the treatment of several peripheral neuropathies. In the present study, we demonstrated that HDAC6 inhibition was sufficient to enhance movement by restoring NMJ impairments observed in a zebrafish disease model. We found that CKD-504, a novel HDAC6 inhibitor, was effective in repairing NMJ defects, suggesting that treatment of neurodegenerative diseases via NMJ targeting is possible.

Pretreatment with GPR88 Agonist Attenuates Postischemic Brain Injury in a Stroke Mouse Model (GPR88 효현제의 전처리에 의한 뇌졸중후 뇌손상 감소효과 연구)

  • Lee, Seo-Yeon;Park, Jung Hwa;Kim, Min Jae;Choi, Byung Tae;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.939-946
    • /
    • 2020
  • Stroke is one of the leading causes of neurological disability worldwide and stroke patients exhibit a range of motor, cognitive, and psychiatric impairments. GPR88 is an orphan G protein-coupled receptor (GPCR) that is highly expressed in striatal medium spiny neurons; its deletion results in poor motor coordination and motor learning. There are currently no studies on the involvement of GPR88 in stroke or in post-stroke brain function recovery. In this study, we found a decrease in GPR88 protein and mRNA expression levels in an ischemic mouse model using Western blot and real-time PCR, respectively. In addition, we observed that, among the three types of cells derived from the brain (brain microvascular endothelial cells, BV2 microglial cells, and HT22 hippocampal neuronal cells), the expression of GPR88 was highest in HT22 neuronal cells, and that GPR88 expression was downregulated in HT22 cells under oxygen-glucose deprivation (OGD) conditions. Moreover, pretreatment with RTI- 13951-33 (10 mg/kg), a brain-penetrant GPR88 agonist, ameliorated brain injury following ischemia, as evidenced by improvements in infarct volume, vestibular-motor function, and neurological score. Collectively, our results suggest that GPR88 could be a potential drug target for the treatment of central nervous system (CNS) diseases, including ischemic stroke.

Adaptive PI Controller Design Based on CTRNN for Permanent Magnet Synchronous Motors (영구자석 동기모터를 위한 CTRNN모델 기반 적응형 PI 제어기 설계)

  • Kim, Il-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.635-641
    • /
    • 2016
  • In many industrial applications that use the electric motors robust controllers are needed. The method using a neural network in order to design a robust controller when a disturbance occurs is studied. Backpropagation algorithm, which is used in a conventional neural network controller is used in many areas, but when the number of neurons in the input layer, hidden layer and output layer of the neural network increases the processing speed of the learning process is slow. In this paper an adaptive PI(Proportional and Integral) controller based on CTRNN(Continuous Time Recurrent Neural Network) for permanent magnet synchronous motors is presented. By varying the load and the speed the validity of the proposed method is verified through simulation and experiments.

Perspective for Clinical Application and Research of Transcranial Direct Current Stimulation in Physical Therapy

  • Kim, Chung-Sun;Nam, Seok-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • Neurostimulation approaches have been developed and explored to modulate neuroplastic changes of cortical function in human brain. As one of the most primary noninvasive tools, transcranial direct current stimulation (tDCS) was extensively studied in the field of neuroscience. The alternation of cortical neurons depending on the polarity of the tDCS has been used for improving cognitive processing including working memory, learning, and language in normal individuals, as well as in patients with neurological or psychiatric diseases. In addition, tDCS has great advantages: it is a non-invasive, painless, safe, and cost-effective approach to enhance brain function in normal subjects and patients with neurological disorders. Numerous previous studies have confirmed the efficacy of tDCS. However, tDCS has not been considered for clinical applications and research in the field of physical therapy. Therefore, this review will focus on the general principles of tDCS and its related application parameters, and provide consideration of motor behavioral research and clinical applications in physical therapy.

Characteristics of somatosensory thalamic neurons : Study on motor disease patients

  • Lee, Bae-Hwan;Lee, Kyung-Hee;Park, Yong-Gou;Chung, Sang-Sup;Chang, Jin-Woo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.140-147
    • /
    • 2002
  • 시상은 체감각 정보를 처리하는데 있어서 매우 중요한 역할을 하는 부위이다. 본 연구는 운동장애 환자의 시상에서 뉴론의 활동 특성을 알아보기 위해 수행되었다. 그 결과 체감각으로서의 운동자극에 반응하는 뉴론이 essential tremor (ET) 환자의 nucleus ventralis intermedius (VIM)에서 발견되었다. ET 환자 뉴론의 평균 활동율(firing rate)은 Parkinson's disease (PD) 환자 보다 높았다. 또한 ET 환자의 VIM에서 운동자극에 반응하는 뉴론의 평균 활동율은 PD 환자 보다 높았다. 하지만 촉각자극(touch)에 반응하는 nucleus ventralis caudalis (VC) 뉴론의 활동율은 ET와 PD 집단간에 차가 없었다. Bursting activity를 나타내는 뉴론은 nucleus ventralis oralis anterior (VOP)에서 ET집단이 PD 집단보다 적었다. tremor cell은 VIM에서 PD 보다 ET집단이 더 적었다. 이러한 결과는 체감각 자극에 반응하는 시상 뉴론의 특성이 운동장애의 유형에 따라 서로 다르다는 것을 시사한다.

  • PDF

Psychiatric Manifestation in Patients with Parkinson's Disease

  • Han, Ji Won;Ahn, Yebin D.;Kim, Won-Seok;Shin, Cheol Min;Jeong, Seong Jin;Song, Yoo Sung;Bae, Yun Jung;Kim, Jong-Min
    • Journal of Korean Medical Science
    • /
    • v.33 no.47
    • /
    • pp.300.1-300.17
    • /
    • 2018
  • Parkinson's disease (PD) is the second most common neurodegenerative disorder. Although its major manifestation is motor symptoms, resulting from the loss of dopaminergic neurons in the substantia nigra, psychiatric symptoms, such as depression, anxiety, hallucination, delusion, apathy and anhedonia, impulsive and compulsive behaviors, and cognitive dysfunction, may also manifest in most patients with PD. Given that the quality of life - and the need for institutionalization - is so highly dependent on the psychiatric well-being of patients with PD, psychiatric symptoms are of high clinical significance. We reviewed the prevalence, risk factors, pathophysiology, and treatment of psychiatric symptoms to get a better understanding of PD for improved management.

Training-Free sEMG Pattern Recognition Algorithm: A Case Study of A Patient with Partial-Hand Amputation (무학습 근전도 패턴 인식 알고리즘: 부분 수부 절단 환자 사례 연구)

  • Park, Seongsik;Lee, Hyun-Joo;Chung, Wan Kyun;Kim, Keehoon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.211-220
    • /
    • 2019
  • Surface electromyogram (sEMG), which is a bio-electrical signal originated from action potentials of nerves and muscle fibers activated by motor neurons, has been widely used for recognizing motion intention of robotic prosthesis for amputees because it enables a device to be operated intuitively by users without any artificial and additional work. In this paper, we propose a training-free unsupervised sEMG pattern recognition algorithm. It is useful for the gesture recognition for the amputees from whom we cannot achieve motion labels for the previous supervised pattern recognition algorithms. Using the proposed algorithm, we can classify the sEMG signals for gesture recognition and the calculated threshold probability value can be used as a sensitivity parameter for pattern registration. The proposed algorithm was verified by a case study of a patient with partial-hand amputation.

Noradrenergic axons hitch hiking along the human abducens nerve

  • Yusra Mansour;Randy Kulesza
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.271-275
    • /
    • 2023
  • The abducens nerve (AN; cranial nerve VI) exits the brainstem at the inferior pontine sulcus, pierces the dura of the posterior cranial fossa, passes through the cavernous sinus in close contact to the internal carotid artery (ICA) and traverses the superior orbital fissure to reach the orbit to innervate the lateral rectus muscle. At its exit from the brainstem, the AN includes only axons from lower motor neurons in the abducens nucleus. However, as the AN crosses the ICA it receives a number of branches from the internal carotid sympathetic plexus. The arrangement, neurochemical profile and function of these sympathetic axons running along the AN remain unresolved. Herein, we use gross dissection and microscopic study of hematoxylin and eosin-stained sections and sections with tyrosine hydroxylase immunolabeling. Our results suggest the AN receives multiple bundles of unmyelinated axons that use norepinephrine as a neurotransmitter consistent with postganglionic sympathetic axons.

Effect of Parthenogenetic Mouse Embryonic Stem Cell (PmES) in the Mouse Model of Huntington′s Disease

  • 이창현;김용식;이영재;김은영;길광수;정길생;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.80-80
    • /
    • 2003
  • Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms, accompanied by marked cell death in the striatum and cortex. Stereotaxic injection of quinolinic acid (QA) into striatum results in a degeneration of GABAergic neurons and exhibits abnormal motor behaviors typical of the illness. The objective of this study was carried out to obtain basic information about whether parthenogenetic mouse embryonic stem (PmES) cells are suitable for cell replacement therapy of HD. To establish PmES cell lines, hybrid F1 (C57BL/6xCBA/N) mouse oocytes were treated with 7% ethanol for 5 min and cytochalasin-B for 4 hr to initiate spontaneous cleavage. Thus established PmES cells were induced to differentiate using bFGF (20ng/ml) followed by selection of neuronal precursor cells for 8 days in N2 medium. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days, then a final differentiation step in N2 medium for 7 days. To establish recipient animal models of HD, young adult mice (7 weeks age ICR mice) were lesioned unilaterally with a stereotaxic injection of QA (60 nM) into the striatum and the rotational behavior of the animals was tested using apomorphine (0.1mg/kg, IP) 7 days after the induction of lesion. Animals rotating more than 120 turns per hour were selected and the differentiated PmES cells (1$\times$10$^4$cells/ul) were implanted into striatum. Four weeks after the graft, immunohistochemical studies revealed the presence of cells reactive to anti-NeuN antibody. However, only a slight improvement of motor behavior was observed. By Nissl staining, cell mass resembling tumor was found at the graft site and near cortex which may explain the slight behavioral improvement. Detailed experiment on cell viability, differentiation and migration explanted in vivo is currently being studied.

  • PDF

A Case Report of a Patient with Parkinson's Disease Treated with Acupuncture and Exercise Therapy (침 및 운동 치료로 호전된 파킨슨병 환자 1례에 대한 증례보고)

  • Park, Miso;Park, SangSoo;Lee, Seung Hyun;Hur, WangJung;Yoo, Horyong
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.5
    • /
    • pp.1018-1028
    • /
    • 2022
  • Objectives: Parkinson's disease is characterized by progressive, irreversible damage to dopamine neurons in the substantia nigra pars compacta, as well as motor and non-motor symptoms. This disease currently has no dependable disease-modifying treatment. In this paper, we describe the treatment of a 67-year-old female with Parkinson's disease using acupuncture and exercise therapy. Case Presentation: Clinical symptoms and the United Kingdom Parkinson's Disease Society Brain Bank Diagnostic Criteria were used to diagnose the patient with Parkinson's disease. Over a 12-week period, the patient visited a Korean medicine hospital 18 times and was treated with acupuncture and exercise therapy in addition to anti-Parkinson's drugs. Before and after treatment, clinical examinations were performed using tools such as the Unified Parkinson's Disease Rating Scale, Fall Efficacy Scale, Parkinson's Disease Questionnaire, Berg Balance Scale, and Non-Motor Symptoms Scale. Furthermore, functional near-infrared spectroscopy was used to assess cortical hemodynamics. All clinical examination results improved after 12 weeks of intervention. In particular, improvements on the Total Unified Parkinson's Disease Rating Scale and Part III of this scale demonstrated large, clinically important differences. Conclusion: This case suggests that combining acupuncture and exercise therapy could produce an effective treatment for Parkinson's disease patients.