DOI QR코드

DOI QR Code

Therapeutic Potential of CKD-504, a Novel Selective Histone Deacetylase 6 Inhibitor, in a Zebrafish Model of Neuromuscular Junction Disorders

  • Jeong, Hui Su (Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University) ;
  • Kim, Hye Jin (Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University) ;
  • Kim, Deok-Ho (Department of Biomedical Engineering, Johns Hopkins University) ;
  • Chung, Ki Wha (Department of Biological Sciences, Kongju National University) ;
  • Choi, Byung-Ok (Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University) ;
  • Lee, Ji Eun (Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University)
  • Received : 2021.10.11
  • Accepted : 2021.12.25
  • Published : 2022.04.30

Abstract

The neuromuscular junction (NMJ), which is a synapse for signal transmission from motor neurons to muscle cells, has emerged as an important region because of its association with several peripheral neuropathies. In particular, mutations in GARS that affect the formation of NMJ result in Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. These disorders are mainly considered to be caused by neuronal axon abnormalities; however, no treatment is currently available. Therefore, in order to determine whether the NMJ could be targeted to treat neurodegenerative disorders, we investigated the NMJ recovery effect of HDAC6 inhibitors, which have been used in the treatment of several peripheral neuropathies. In the present study, we demonstrated that HDAC6 inhibition was sufficient to enhance movement by restoring NMJ impairments observed in a zebrafish disease model. We found that CKD-504, a novel HDAC6 inhibitor, was effective in repairing NMJ defects, suggesting that treatment of neurodegenerative diseases via NMJ targeting is possible.

Keywords

Acknowledgement

This work was supported by the National Research Foundation, funded by the Korean government's MSIP (2021R1A2C3004572 to J.E.L., 2021R1A6A3A13041249 to H.S.J., 2021R1A4A2001389 to K.W.C., B.O.C., and J.E.L.), and was supported by the National Institutes of Health, USA (NIH RO1 NS094388 to B.O.C. and D.H.K.).

References

  1. Antonellis, A., Ellsworth, R.E., Sambuughin, N., Puls, I., Abel, A., Lee-Lin, S.Q., Jordanova, A., Kremensky, I., Christodoulou, K., Middleton, L.T., et al. (2003). Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293-1299. https://doi.org/10.1086/375039
  2. Antonellis, A., Lee-Lin, S.Q., Wasterlain, A., Leo, P., Quezado, M., Goldfarb, L.G., Myung, K., Burgess, S., Fischbeck, K.H., and Green, E.D. (2006). Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons. J. Neurosci. 26, 10397-10406. https://doi.org/10.1523/jneurosci.1671-06.2006
  3. Asthana, J., Kapoor, S., Mohan, R., and Panda, D. (2013). Inhibition of HDAC6 deacetylase activity increases its binding with microtubules and suppresses microtubule dynamic instability in MCF-7 cells. J. Biol. Chem. 288, 22516-22526. https://doi.org/10.1074/jbc.M113.489328
  4. Banerjee, S. and Riordan, M. (2018). Coordinated regulation of axonal microtubule organization and transport by Drosophila neurexin and BMP pathway. Sci. Rep. 8, 17337. https://doi.org/10.1038/s41598-018-35618-7
  5. Benoy, V., Van Helleputte, L., Prior, R., d'Ydewalle, C., Haeck, W., Geens, N., Scheveneels, W., Schevenels, B., Cader, M.Z., Talbot, K., et al. (2018). HDAC6 is a therapeutic target in mutant GARS-induced Charcot-MarieTooth disease. Brain 141, 673-687. https://doi.org/10.1093/brain/awx375
  6. Borg, K. and Ericson-Gripenstedt, U. (2002). Muscle biopsy abnormalities differ between Charcot-Marie-Tooth type 1 and 2: reflect different pathophysiology? Exerc. Sport Sci. Rev. 30, 4-7. https://doi.org/10.1097/00003677-200201000-00002
  7. Bremer, J., Skinner, J., and Granato, M. (2017). A small molecule screen identifies in vivo modulators of peripheral nerve regeneration in zebrafish. PLoS One 12, e0178854. https://doi.org/10.1371/journal.pone.0178854
  8. Butler, K.V., Kalin, J., Brochier, C., Vistoli, G., Langley, B., and Kozikowski, A.P. (2010). Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 132, 10842-10846. https://doi.org/10.1021/ja102758v
  9. Chapela, D., Sousa, S., Martins, I., Cristovao, A.M., Pinto, P., Corte-Real, S., and Saude, L. (2019). A zebrafish drug screening platform boosts the discovery of novel therapeutics for spinal cord injury in mammals. Sci. Rep. 9, 10475. https://doi.org/10.1038/s41598-019-47006-w
  10. Chen, S., Owens, G.C., Makarenkova, H., and Edelman, D.B. (2010). HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 5, e10848. https://doi.org/10.1371/journal.pone.0010848
  11. Choi, H., Kim, H.J., Yang, J., Chae, S., Lee, W., Chung, S., Kim, J., Choi, H., Song, H., Lee, C.K., et al. (2020). Acetylation changes tau interactome to degrade tau in Alzheimer's disease animal and organoid models. Aging Cell 19, e13081. https://doi.org/10.1111/acel.13081
  12. Cirrincione, A.M., Pellegrini, A.D., Dominy, J.R., Benjamin, M.E., Utkina-Sosunova, I., Lotti, F., Jergova, S., Sagen, J., and Rieger, S. (2020). Paclitaxel-induced peripheral neuropathy is caused by epidermal ROS and mitochondrial damage through conserved MMP-13 activation. Sci. Rep. 10, 3970. https://doi.org/10.1038/s41598-020-60990-8
  13. Cirrincione, A.M. and Rieger, S. (2020). Analyzing chemotherapy-induced peripheral neuropathy in vivo using non-mammalian animal models. Exp. Neurol. 323, 113090. https://doi.org/10.1016/j.expneurol.2019.113090
  14. Dompierre, J.P., Godin, J.D., Charrin, B.C., Cordelieres, F.P., King, S.J., Humbert, S., and Saudou, F. (2007). Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571-3583. https://doi.org/10.1523/JNEUROSCI.0037-07.2007
  15. d'Ydewalle, C., Krishnan, J., Chiheb, D.M., Van Damme, P., Irobi, J., Kozikowski, A.P., Vanden Berghe, P., Timmerman, V., Robberecht, W., and Van Den Bosch, L. (2011). HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med. 17, 968-974. https://doi.org/10.1038/nm.2396
  16. Ennerfelt, H., Voithofer, G., Tibbo, M., Miller, D., Warfield, R., Allen, S., and Kennett Clark, J. (2019). Disruption of peripheral nerve development in a zebrafish model of hyperglycemia. J. Neurophysiol. 122, 862-871. https://doi.org/10.1152/jn.00318.2019
  17. Grice, S.J., Sleigh, J.N., Motley, W.W., Liu, J.L., Burgess, R.W., Talbot, K., and Cader, M.Z. (2015). Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum. Mol. Genet. 24, 4397-4406. https://doi.org/10.1093/hmg/ddv176
  18. Ha, N., Choi, Y.I., Jung, N., Song, J.Y., Bae, D.K., Kim, M.C., Lee, Y.J., Song, H., Kwak, G., Jeong, S., et al. (2020). A novel histone deacetylase 6 inhibitor improves myelination of Schwann cells in a model of Charcot-Marie-Tooth disease type 1A. Br. J. Pharmacol. 177, 5096-5113. https://doi.org/10.1111/bph.15231
  19. He, W., Bai, G., Zhou, H., Wei, N., White, N.M., Lauer, J., Liu, H., Shi, Y., Dumitru, C.D., Lettieri, K., et al. (2015). CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature 526, 710-714. https://doi.org/10.1038/nature15510
  20. Holloway, M.P., DeNardo, B.D., Phornphutkul, C., Nguyen, K., Davis, C., Jackson, C., Richendrfer, H., Creton, R., and Altura, R.A. (2016). An asymptomatic mutation complicating severe chemotherapy-induced peripheral neuropathy (CIPN): a case for personalised medicine and a zebrafish model of CIPN. NPJ Genom. Med. 1, 16016. https://doi.org/10.1038/npjgenmed.2016.16
  21. Howard, J.F., Jr. (2018). Myasthenia gravis: the role of complement at the neuromuscular junction. Ann. N. Y. Acad. Sci. 1412, 113-128. https://doi.org/10.1111/nyas.13522
  22. Janke, C. and Bulinski, J.C. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773-786. https://doi.org/10.1038/nrm3227
  23. Jung, J., Choi, I., Ro, H., Huh, T.L., Choe, J., and Rhee, M. (2020). march5 governs the convergence and extension movement for organization of the telencephalon and diencephalon in zebrafish embryos. Mol. Cells 43, 76-85. https://doi.org/10.14348/molcells.2019.0210
  24. Kalebic, N., Martinez, C., Perlas, E., Hublitz, P., Bilbao-Cortes, D., Fiedorczuk, K., Andolfo, A., and Heppenstall, P.A. (2013). Tubulin acetyltransferase alphaTAT1 destabilizes microtubules independently of its acetylation activity. Mol. Cell. Biol. 33, 1114-1123. https://doi.org/10.1128/MCB.01044-12
  25. Kesner, V.G., Oh, S.J., Dimachkie, M.M., and Barohn, R.J. (2018). Lambert-Eaton myasthenic syndrome. Neurol. Clin. 36, 379-394. https://doi.org/10.1016/j.ncl.2018.01.008
  26. Lee, H.J., Park, J., Nakhro, K., Park, J.M., Hur, Y.M., Choi, B.O., and Chung, K.W. (2012). Two novel mutations of GARS in Korean families with distal hereditary motor neuropathy type V. J. Peripher. Nerv. Syst. 17, 418-421. https://doi.org/10.1111/j.1529-8027.2012.00442.x
  27. Licciardi, P.V. and Karagiannis, T.C. (2012). Regulation of immune responses by histone deacetylase inhibitors. ISRN Hematol. 2012, 690901. https://doi.org/10.5402/2012/690901
  28. Loprest, L.J., Pericak-Vance, M.A., Stajich, J., Gaskell, P.C., Lucas, A.M., Lennon, F., Yamaoka, L.H., Roses, A.D., and Vance, J.M. (1992). Linkage studies in Charcot-Marie-Tooth disease type 2: evidence that CMT types 1 and 2 are distinct genetic entities. Neurology 42(3 Pt 1), 597-601. https://doi.org/10.1212/WNL.42.3.597
  29. Mann, B.S., Johnson, J.R., Cohen, M.H., Justice, R., and Pazdur, R. (2007). FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12, 1247-1252. https://doi.org/10.1634/theoncologist.12-10-1247
  30. Mariadason, J.M. (2008). HDACs and HDAC inhibitors in colon cancer. Epigenetics 3, 28-37. https://doi.org/10.4161/epi.3.1.5736
  31. Menelaou, E., Husbands, E.E., Pollet, R.G., Coutts, C.A., Ali, D.W., and Svoboda, K.R. (2008). Embryonic motor activity and implications for regulating motoneuron axonal pathfinding in zebrafish. Eur. J. Neurosci. 28, 1080-1096. https://doi.org/10.1111/j.1460-9568.2008.06418.x
  32. Mo, Z., Zhao, X., Liu, H., Hu, Q., Chen, X.Q., Pham, J., Wei, N., Liu, Z., Zhou, J., Burgess, R.W., et al. (2018). Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat. Commun. 9, 1007. https://doi.org/10.1038/s41467-018-03461-z
  33. Morena, J., Gupta, A., and Hoyle, J.C. (2019). Charcot-Marie-Tooth: from molecules to therapy. Int. J. Mol. Sci. 20, 3419. https://doi.org/10.3390/ijms20143419
  34. Namdar, M., Perez, G., Ngo, L., and Marks, P.A. (2010). Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. U. S. A. 107, 20003-20008. https://doi.org/10.1073/pnas.1013754107
  35. Niehues, S., Bussmann, J., Steffes, G., Erdmann, I., Kohrer, C., Sun, L., Wagner, M., Schafer, K., Wang, G., Koerdt, S.N., et al. (2015). Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat. Commun. 6, 7520. https://doi.org/10.1038/ncomms8520
  36. Osseni, A., Ravel-Chapuis, A., Thomas, J.L., Gache, V., Schaeffer, L., and Jasmin, B.J. (2020). HDAC6 regulates microtubule stability and clustering of AChRs at neuromuscular junctions. J. Cell Biol. 219, e201901099. https://doi.org/10.1083/jcb.201901099
  37. Ponomareva, O.Y., Eliceiri, K.W., and Halloran, M.C. (2016). Charcot-Marie-Tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development. Neural Dev. 11, 2. https://doi.org/10.1186/s13064-016-0058-x
  38. Rodriguez Cruz, P.M., Cossins, J., Beeson, D., and Vincent, A. (2020). The neuromuscular junction in health and disease: molecular mechanisms governing synaptic formation and homeostasis. Front. Mol. Neurosci. 13, 610964. https://doi.org/10.3389/fnmol.2020.610964
  39. Seburn, K.L., Nangle, L.A., Cox, G.A., Schimmel, P., and Burgess, R.W. (2006). An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron 51, 715-726. https://doi.org/10.1016/j.neuron.2006.08.027
  40. Simoes-Pires, C., Zwick, V., Nurisso, A., Schenker, E., Carrupt, P.A., and Cuendet, M. (2013). HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol. Neurodegener. 8, 7. https://doi.org/10.1186/1750-1326-8-7
  41. Sivakumar, K., Kyriakides, T., Puls, I., Nicholson, G.A., Funalot, B., Antonellis, A., Sambuughin, N., Christodoulou, K., Beggs, J.L., Zamba-Papanicolaou, E., et al. (2005). Phenotypic spectrum of disorders associated with glycyl-tRNA synthetase mutations. Brain 128, 2304-2314. https://doi.org/10.1093/brain/awh590
  42. Sleigh, J.N., Dawes, J.M., West, S.J., Wei, N., Spaulding, E.L., Gomez-Martin, A., Zhang, Q., Burgess, R.W., Cader, M.Z., Talbot, K., et al. (2017). Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by Gars mutations. Proc. Natl. Acad. Sci. U. S. A. 114, E3324-E3333.
  43. Sleigh, J.N., Grice, S.J., Burgess, R.W., Talbot, K., and Cader, M.Z. (2014). Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice. Hum. Mol. Genet. 23, 2639-2650. https://doi.org/10.1093/hmg/ddt659
  44. Sleigh, J.N., Mech, A.M., and Schiavo, G. (2020). Developmental demands contribute to early neuromuscular degeneration in CMT2D mice. Cell Death Dis. 11, 564. https://doi.org/10.1038/s41419-020-02798-y
  45. Smith, A., Kim, J.H., Chun, C., Gharai, A., Moon, H.W., Kim, E.Y., Nam, S.H., Ha, N., Song, J.Y., Chung, K.W., et al. (2022). HDAC6 inhibition corrects electrophysiological and axonal transport deficits in a human stem cell-based model of Charcot-Marie-Tooth disease (type 2D). Adv. Biol. (Weinh.) 6, e2101308.
  46. Son, I.H., Chung, I.M., Lee, S.I., Yang, H.D., and Moon, H.I. (2007). Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg. Med. Chem. Lett. 17, 4753-4755. https://doi.org/10.1016/j.bmcl.2007.06.060
  47. Valenzuela-Fernandez, A., Cabrero, J.R., Serrador, J.M., and Sanchez-Madrid, F. (2008). HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 18, 291-297. https://doi.org/10.1016/j.tcb.2008.04.003
  48. Vilmont, V., Cadot, B., Vezin, E., Le Grand, F., and Gomes, E.R. (2016). Dynein disruption perturbs post-synaptic components and contributes to impaired MuSK clustering at the NMJ: implication in ALS. Sci. Rep. 6, 27804. https://doi.org/10.1038/srep27804
  49. Wenzel, E.D., Speidell, A., Flowers, S.A., Wu, C., Avdoshina, V., and Mocchetti, I. (2019). Histone deacetylase 6 inhibition rescues axonal transport impairments and prevents the neurotoxicity of HIV-1 envelope protein gp120. Cell Death Dis. 10, 674. https://doi.org/10.1038/s41419-019-1920-7
  50. Wong, V.S.C., Picci, C., Swift, M., Levinson, M., Willis, D., and Langley, B. (2018). alpha-tubulin acetyltransferase is a novel target mediating neurite growth inhibitory effects of chondroitin sulfate proteoglycans and myelin-associated glycoprotein. eNeuro 5, ENEURO.0240-17.2018.
  51. Zhang, Y., Li, N., Caron, C., Matthias, G., Hess, D., Khochbin, S., and Matthias, P. (2003). HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 22, 1168-1179. https://doi.org/10.1093/emboj/cdg115