• Title/Summary/Keyword: Motor identification

Search Result 304, Processing Time 0.027 seconds

SIMULTANEOUS SPEED AND ROTOR TIME CONSTANT IDENTIFICATION OF AN INDUCTION MOTOR DRIVE BASED ON THE MODEL REFERENCE ADAPTIVE SYSTEM COMBINED WITH A FUZZY RESISTANCE ESTIMATOR

  • Soltani, Jafar;Mizaeian, Behzad
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.11-16
    • /
    • 1998
  • In this paper, simultaneous estimation of rotor speed and time constant for a voltage source inverter (VSI) fed induction motor drive are disccussed. The theory is based on the Model Reference Adaptive System (MRAS). The identifier executes Simultaneous rotor speed and time constant so that vector control of the induction may be achieved in the rotor-flux oriented reference frame. Furthermore, to eliminate the offset error caused by the change in the stator resistance, a fuzzy resistance regulator is also designed which operates in parallel with the rotor speed and time constant identifier

  • PDF

A ROBUST VECTOR CONTROL FOR PARAMETER VARIATIONS OF INDUCTION MOTOR

  • Park, Jee-ho;Cho, Yong-Kil;Woo, Jung-In;Ahn, In-Mo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.330-335
    • /
    • 1998
  • In this paper the robust vector control method of induction motor for the purpose of improving the system performance deterioration caused by parameter variations is proposed. The estimations of the stator current and the rotor flux are obtained by the full order state observer with corrective prediction error feedback. and the adaptive scheme is constructed to estimate the rotor speed with the error signal between real and estimation value of the stator current. Adaptive sliding observer based on the variable structure control is applied to parameter identification. Consequently predictive current control and speed sensorless vector control can be obtained simultaneously regardless of the parameter variations.

  • PDF

Tibial Nerve Block for Cerebral Palsy Patients (뇌성마비 환자의 수술적응 판정을 위한 경골신경 차단)

  • Park, Chong-Min;Kim, Young-Cheol
    • The Korean Journal of Pain
    • /
    • v.9 no.1
    • /
    • pp.232-234
    • /
    • 1996
  • For surgical Treatment of spastic deformities of the foot, selective peripheral neurotomies were introduced. These neurotomies utilize microsurgical techniques and intraoperative electrical stimulation for better identification of the function of the fascicles constituting the nerve. Selectivity is required to supress the excess of spasticity without excessive weakening of motor strength and without producing exaggerated amyotrophy. To achieve this goal, minimum one fourth of the motor fibers must be preserved. Neurotomies may be indicated when spasticity is localized to muscle or muscle groups supplied by a single or a few peripheral nerves that are easily accessible. To help the surgeon decide if neurotomy is appropriate, temporary local anesthetic block of the nerve with bupivacaine can be useful. Such a test can determine if articular limitations result from spasticity, musculotendinous contractures, or articular ankyloses because only spasticity is decreased by the test. In additon, these tests give the patient a chance to appreciate what to expect from the operation.

  • PDF

Initial Rotor Position Estimation of an IPMSM Based on Least Squares Approximation with a Polarity Identification (극성 판별이 가능한 최소 제곱법 기반의 IPMSM 회전자 초기 위치 추정)

  • Kim, Keon Young;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.72-75
    • /
    • 2018
  • An initial rotor position estimation method is proposed in this study for an interior permanent-magnet synchronous motor without a resolver or an absolute encoder. This method uses least squares approximation to estimate the initial rotor position. The magnetic polarity is identified by injection of short pulses. The proposed estimation process is robust because it does not require complex signal processing that depends on the performance of a digital filter. In addition, it can be applied to various servo systems because it does not require additional hardware. Experimental results validate the effectiveness of the proposed method using a standard industrial servomotor with interior-permanent magnets.

Inertia Identification Algorithm for Spindle Motor of Machine Tool (고성능 절삭 추력을 위한 스핀들 전동기의 최대토크운전 분석)

  • Kwon, Wan-Sung;Kim, Young-Sik;Cao, Qinbo;Choi, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.37-39
    • /
    • 2007
  • This paper compared with field weakening operation methods for the spindle motor of machine tool in which high speed drive is required. The maximum torque field weakening algorithm ensures the full utilization of the output torque capability of the machine over 1/Wr method. From simulation, the validity of the Max_Te method is confirmed. It is verified that the Max-Te algorithm provided the improved torque capability over 1/Wr method. So, It is applicable to provide high performance control involving fast acceleration and precise speed control for the adjustable speed drive system of spindle.

  • PDF

An Improvement of Low Speed Operation of Electric Machine with Inertia Identification Using ROELO (축소 차원 확장 루엔버거 관성 추정기를 이용한 전동기 저속운전의 성능 개선)

  • Lee, Kyo-Beum;Yoon, Young-Chul;Song, Joong-Ho;Choy, Ick;Yoo, Bum-Jae;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1090-1092
    • /
    • 2003
  • A new scheme to estimate the moment of inertia in the motor drive system in very low speed is proposed in this paper. The simple speed estimation scheme, which is usually used in most servo system for low speed operation, is sensitive to the variation of the machine parameter, especially the moment of inertia. To estimate the motor inertia value, Reduced-Order Extended Luenberger Observer (ROELO) Is applied. The effectiveness of the proposed ROELO is applied by experiments.

  • PDF

Simplified Rotor and Stator Resistance Estimation Method Based on Direct Rotor Flux Identification

  • Wang, Mingyu;Wang, Dafang;Dong, Guanglin;Wei, Hui;Liang, Xiu;Xu, Zexu
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.751-760
    • /
    • 2019
  • Since parameter mismatch seriously impacts the efficiency and stability of induction motor drives, it is important to accurately estimate the rotor and stator resistance. This paper introduces a method to directly calculate the rotor flux that is independent of stator and rotor resistance and electrical angle. It is based on obtaining the rotor and stator resistance using the model reference adaptive system (MRAS) method. The method has a lower computation burden and less adaptation time when compared with other rotor resistance estimation methods. This paper builds three coordinate frames to analyze the rotor flux error and rotor resistance error. A number of implementation issues are also considered.

A Fault Severity Index for Stator Winding Faults Detection in Vector Controlled PM Synchronous Motor

  • Hadef, M.;Djerdir, A.;Ikhlef, N.;Mekideche, M.R.;N'diaye, A. O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2326-2333
    • /
    • 2015
  • Stator turn faults in permanent magnet synchronous motors (PMSMs) are more dangerous than those in induction motors (IMs) because of the presence of spinning rotor magnets that can be turned off at will. Condition monitoring and fault detection and diagnosis of the PMSM have been receiving a growing amount of attention among scientists and engineers in the past few years. The aim of this study is to propose a new detection technique of stator winding faults in a three-phase PMSM. This technique is based on the image analysis and recognition of the stator current Concordia patterns, and will allow the identification of turn faults in the stator winding as well as its correspondent fault index severity. A test bench of a vector controlled PMSM motor behaviors under short circuited turn in two phases stator windings has been built. Some experimental results of the phase to phase short circuits have been performed for diagnosis purpose.

Modeling and Characteristic Analysis of HEV Li-ion Battery Using Recursive Least Square Estimation (최소 자승법을 이용한 하이브리드용 리튬이온 배터리 모델링 및 특성분석)

  • Kim, Ho-Gi;Heo, Sang-Jin;Kang, Gu-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.130-136
    • /
    • 2009
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of Li-ion battery indicates highly dependant of temperatures. The system pole and internal resistance changes 6.6 and 18 times at $-20^{\circ}C$, comparing with those at $25^{\circ}C$, respectively. These results will be utilized on constructing model-based state observer or an on-line identification and an adaptation of the model parameters in battery management systems for hybrid electric vehicle applications.

Design of Linear Ultrasonic Motor for Small tong Actuation (렌즈 구동을 위한 선형 초음파 전동기 설계)

  • Kwon Taeseong;Lee Seung-Yop;Kim Sookyung
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.190-194
    • /
    • 2005
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile camera phones. However, conventional magnetic coils of electromagnetic motors are a major obstacle for miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM (ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 1.52 mm/s at 10 kHz input signal in 5 V.

  • PDF