• Title/Summary/Keyword: Motor Bearing

Search Result 468, Processing Time 0.022 seconds

Compensation of Inclined Rotating Axis Using Unsymmetric Groove Patterns (비대칭 Groove를 이용한 FDB 회전축의 기울기 보상)

  • Lee, Nam-Hun;Han, Jae-Hyuk;Oh, Dong-Ho;Kim, Chul-Soon;Byun, Yong-Kyu;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.582-585
    • /
    • 2004
  • Most of hard disk drives currently employ fluid dynamic bearing (FDB) for their rotor support. Stiffness of the FDB is affected by many design factors such as bearing clearance, fluid viscosity, and rotational speed. For the high rotating speed HDDs stiffness of the rotor is normally high enough to accomodate load disturbances. However small form factor HDDs that are to be operated in low power consumption are often designed with low stiffness rotors. Although the low stiffness rotor clearly benefits low power operation, it could damage the entire motor structure or head disk interface even by a light mechanical load disturbance such as shock or vibration. In addition, since a single channel HDD does not provide gram load equilibrium in axial direction the rotor could be tilted and make a hard contact to stator. A non-symmetric groove pattern could successfully compensate the tilted rotor angle during operation.

  • PDF

Pulse-Width Modulation Strategy for Common Mode Voltage Elimination with Reduced Common Mode Voltage Spikes in Multilevel Inverters with Extension to Over-Modulation Mode

  • Pham, Khoa-Dang;Nguyen, Nho-Van
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.727-743
    • /
    • 2019
  • This paper presents a pulse-width modulation strategy to eliminate the common mode voltage (CMV) with reduced CMV spikes in multilevel inverters since a high CMV magnitude and its fast variations dv/dt result in bearing failure of motors, overvoltage at motor terminals, and electromagnetic interference (EMI). The proposed method only utilizes the zero CMV states in a space vector diagram and it is implemented by a carrier-based pulse-width modulation (CBPWM) method. This method is generalized for odd number levels of inverters including neutral-point-clamped (NPC) and cascaded H-bridge inverters. Then it is extended to the over-modulation mode. The over-modulation mode is implemented by using the two-limit trajectory principle to maintain linear control and to avoid look-up tables. Even though the CMV is eliminated, CMV spikes that can cause EMI and bearing current problems still exist due to the deadtime effect. As a result, the deadtime effect is analyzed. By taking the deadtime effect into consideration, the proposed method is capable of reducing CMV spikes. Simulation and experimental results verify the effectiveness of the proposed strategy.

Experimental Study of the Effect of Shortening of Life of Tapered Roller Bearings when Subjected to Excessive Axial Pre-Load (과다 예압을 받는 테이퍼롤러 베어링의 수명단축효과에 대한 실험적 연구)

  • Park, Jong-Won;Kim, Hyoung-Eui;Kim, Jong-Ock;Sim, Yang-Jin;Jung, Won-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1161-1166
    • /
    • 2010
  • Tapered roller bearings are core components of rotating machine parts and are simultaneously subjected to axial and radial loads. Life-shortening effect was particularly evident in the case of tapered roller bearings used in the input and output shafts of transmission; this shortening of life was a result of excessive axial pre-load, which is common in the transmission assembly line. In this study, we derived an equation for evaluating the life of tapered roller bearings subjected to excessive pre-load by using accelerated life test data. The DOE(Design Of Experiment) method and FEA(Finite Element Analysis) was used for determining the condition for performing an accelerated life test. This equation for evaluating the service life of the bearings was derived by analyzing the Weibull distribution of the test results. Using the derived equation the life evaluated was 6-7 times longer than that evaluated by the conventional $L_{10}$ bearing-life equation. The results of this study will be helpful in predicting the life of tapered roller bearings subjected to excessive pre-load and in designing reliable rotating machines.

Measurement and Active Compensation for 3-DOF Motion Errors of an Air Bearing Stage with Magnetic Preloads (자기예압 공기베어링 스테이지의 3 자유도 운동오차 측정 및 능동 보정)

  • Ro, Seung-Kook;Kim, Soo-Hyun;Kwak, Yoon-Keun;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.109-117
    • /
    • 2009
  • This paper presents a linear air bearing stage with compensated motion errors by active control of preloads generated by magnetic actuators with combination of permanent and electromagnets. A 1-axis linear stage motorized with a linear motor with 240mm of travel range is built for verifying this design concept and tested its performances. The three motions of the table are controlled with four magnetic actuators driven by current amplifiers and a DSP based digital controller. Three motion errors were measured combined method with laser interferometer and two-probe method with $0.085{\mu}m$ of repeatability for straightness error. The measured motion errors were modeled as functions of the stage position, and compensation were carried out with feedforward control because the characteristics of the motion control with magnetic actuators are linear and independent for each degree-of-freedoms. As the results, the errors were reduced from $1.09{\mu}m$ to $0.11{\mu}m$ for the vertical motion, from 9.42 sec to 0.18 sec for the pitch motion and from 2.42 sec to 0.18 sec for roll motion.

Accuracy Simulation of Precision Rotary Motion Systems (회전운동 시스템의 정밀도 시뮬레이션 기술)

  • Hwang, Joo-Ho;Shim, Jong-Youp;Hong, Seong-Wook;Lee, Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.285-291
    • /
    • 2011
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. The error motions of the spindle are not desired errors in the three linear direction motions and two rotating motions. Those are usually due to the imperfect of bearings, stiffness of spindle, assembly errors, external force or unbalance of rotors. The error motions of the spindle have been needed to be decreased to desired goal of spindle's performance. The level of error motion is needed to be estimated during the design and assembly process of the spindle. In this paper, the estimation method for the five degree of freedom (5 D.O.F) error motions of the spindle is suggested. To estimate the error motions of the spindle, waviness of shaft and bearings, external force model was used as input data. And, the estimation models are considering geometric relationship and force equilibrium of the five degree of the freedom. To calculate error motions of the spindle, not only imperfection of the shaft, bearings, such as rolling element bearing, hydrostatic bearing, and aerostatic bearing, but also driving elements such as worm, pulley, and direct driving motor systems, were considered.

The Effects of Integrated Provision Action Observation and Synchronized Electrical Sensory Stimulation for Sit-to-stand in Stroke Patients Function (일어서기 동작에 대한 동작관찰과 동기화된 전기적 감각자극의 통합적 제공이 뇌졸중 환자의 기능에 미치는 효과)

  • Moon, Young;Choi, Jong-duk
    • Physical Therapy Korea
    • /
    • v.27 no.3
    • /
    • pp.191-198
    • /
    • 2020
  • Background: Stroke patients experience multiple dysfunctions that include motor and sensory impairments. Therefore, new intervention methods require a gradational approach depending on functional levels of a stroke patient's activity and should include cognition treatment to allow for a patient's active participation in rehabilitation. Objects: This study investigates the effect of integrated revision of electrical sensory stimulation, which stimulates somatosensory and action observation training, which is synchronized cognition intervention method on stroke patients' functions. Methods: Twenty-one stroke patients were randomized into two groups. The two groups underwent twenty minutes of intervention five times a week for three weeks. This study used an electromyogram to evaluate symmetric muscle activation of lower extremities and muscle onset time when performing sit to stand before and after intervention. A weight-bearing ratio was used to evaluate the weight-bearing of the affected side in a sit to standing. To evaluate sit to stand performance ability, this study performed five timed sit to stand tests. Results: The two groups both showed statistically significant improvement in muscle onset time of lower extremity, static balance ability in a standing position, and sit to stand performance after the intervention (p < 0.05). In addition, the action observation and synchronized electrical sensory stimulation group showed significant improvement in symmetric muscle activation of lower extremities and weight-bearing ratio of the affected side (p < 0.05). Conclusion: action observation and synchronized electrical sensory stimulation (AOT with ESS) can have positive effects on a stroke patient's sit to stand performance, and the intervention method that provides integrated AOT with ESS can be used as new nervous system intervention program.

Design of Magnetic Bearings for 200 HP Class Turbo Blower (200 마력급 터보 블로워 적용을 위한 자기베어링 설계)

  • Park, Cheol Hoon;Yoon, Tae Gwang;Park, Jun Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.12-18
    • /
    • 2015
  • Recently, the development trend of turbomachinery is high capacity and high efficiency. Most of turbomachinery in the market are adopting ball bearings or air foil bearings. However, ball bearings have a limit for high speed product over $2.0{\times}10^6DN$(product of the inner diameter of the bearing in mm (D) and the maximum speed in rpm (N)). Air foil bearings have a limit for high axial load for high power products over 200~300 HP(horse power). Magnetic bearing is one of the solutions to overcome the limits of high speed and high axial load. Because magnetic bearings have no friction between the rotor and the bearings, they can reduce the load of the motor and make it possible to increase the rotating speed up to $5.0{\times}10^6DN$. Moreover, they can have high axial load capacity, because the axial load capacity of magnetic bearing depends on the capacity of the designed electromagnet. In this study, the radial and thrust magnetic bearings are designed to be applied to the 200 HP class turbo blower, and their performance was evaluated by the experiment. Based on the tests up to 26,400 rpm and 21,000 rpm under the no-load and load condition, respectively, it was verified that the magnetic bearings are stably support the rotor of the turbo blower.

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.

Bone mineral Density of lumbar Spine in Children With Spastic Quadriplegia and Spastic Diplegia (경직성 사지마비와 양하지마비 아동의 요추부 골밀도)

  • Song, Ju-Young;Kim, Jin-Sang
    • Physical Therapy Korea
    • /
    • v.8 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • In children with cerebral palsy, bone density is decreased by disturbance of bone remodelling due to lack of normal weight bearing and muscle contraction through physical activity. Loss of bone density cause fracture, delays treatment with immobilization, and leads to functional limitation. The purpose of this study was to investigate bone mineral density of lumbar spine in children with spastic quadriplegia and diplegia. Six spastic quadriplegia and 14 spastic diplegia were evaluated in this study. QDR 4500 X-ray densitometer was used to measure bone density at lumbar spine (L1~L4). Children with cerebral palsy showed lower bone density than that of normal children. Bone density in children with spastic quadriplegia and diplegia was $-1.812{\pm}.962$, $-1.519{\pm}.935$, respectively. However, there was no significant differences in bone density between children with spastic quadriplegia and diplegia. There was no significant difference in bone density relation to motor development level, height, and weight. Further study is needed to find the appropriate interventions for preventing loss of bone density in children with cerebral palsy.

  • PDF

Development of a Robot Element Design Program (로봇 요소품 설계 프로그램 개발)

  • Jung Il Ho;Kim Chang Su;Seo Jong Hwi;Park Tae Won;Kim Hee Jin;Choi Jae Rak;Byun Kyng Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.113-120
    • /
    • 2005
  • This paper presents the development of the design of the robot element. Robot element design is an important part of robot design since it decides the performance and life time of the robot. It is necessary that the robot kinematics and the robot dynamics are accomplished to design the robot elements. The robot kinematics and dynamics determine the design parameters of the element. We developed a robot element design program with which a designer can design the robot element with convenience and reliability. The program is composed of motor, harmonic driver and ball-screw design. The program is founded on the virtual robot design program. The virtual robot design program is the powerful software which may be used to solve various problems of the robot kinematics and dynamics. The robot element design program may be used to calculate the design parameters of the element that are necessary to design robot element. Therefore, the designer can decide upon the available robot elements available to perform the objective of the robot. The robot element design program is expected to increase the competitiveness and efficiency of the robot industry.