• 제목/요약/키워드: Motive fluid

검색결과 16건 처리시간 0.02초

이젝터가 부착된 냉동시스템의 성능실험

  • 이원희;김윤조;김민수
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.993-1001
    • /
    • 2001
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were performed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one evaporator) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flaw rate ratio of suction fluid to motive fluid increases. The COP of dual-evaporator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

  • PDF

Experimental Study on the Performance of Refrigeration System with an Ejector

  • Lee, Won-Hee;Kim, Yoon-Jo;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권4호
    • /
    • pp.201-210
    • /
    • 2002
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were peformed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one of the evaporators) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flow rate ratio of suction fluid to motive fluid increases. The COP of dual-evapo-rator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

공기구동 이젝터의 노즐 형상과 위치 변화에 따른 성능 특성 (Performance Characteristics of Air Driven Ejector According to the Position Changes and the Shape of Driving Nozzle)

  • 지명국;김필환;박기태;토니우토모;정한식;정효민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.550-556
    • /
    • 2008
  • The aim of this research is to analyze the influence of motive pressure, driving nozzle position and nozzle throat ratio on the performance of ejector. The experiment was conducted in the variation of motive pressure of 0.196, 0.294, 0.392 and 0.490MPa respectively. The position of driving nozzle was varied in difference locations according to mixing tube diameter(0.5d, 1d, 2d, 3d, 4.15d, 5d and 6d). The experimental results show when the nozzle outlet is located at 3d, the flow characteristics change abruptly. It is shown that the suction flow rate and pressure lift ratio of ejector is influenced by the driving nozzle position. At nozzle position location of the Id of mixing tube diameter the performance of ejector gives the best performance.

Nanoparticle Contrast in Magneto-Motive Optical Doppler Tomography

  • Kim, Jee-Hyun;Oh, Jung-Hwan
    • Journal of the Optical Society of Korea
    • /
    • 제10권3호
    • /
    • pp.99-104
    • /
    • 2006
  • We introduce a novel contrast mechanism for imaging superparamagnetic iron oxide (SPIO) nanoparticles (average diameter ${\sim}100nm$) using magneto-motive optical Doppler tomography (MM-ODT), which combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect the nanoparticles flowing through a glass capillary tube. A solenoid cone-shaped ferrite core extensively increased the magnetic field strength ($B_{max}=1\;T,\;{\Delta}|B|^2=220T^2/m$) at the tip of the core and also focused the magnetic force on targeted samples. Nanoparticle contrast was demonstrated in a capillary tube filled with the SPIO solution by imaging the Doppler frequency shift which was observed independent of the flow rate and direction. Results suggest that MM-ODT may be a promising technique to enhance SPIO nanoparticle contrast for imaging fluid flow.

전산해석을 통한 열증기압축기 설계와 실험적 검증 (Design of Thermal Vapor Compressor by Numerical Analysis and Experimental Verification)

  • 박일석;박상민;하지수
    • 한국유체기계학회 논문집
    • /
    • 제8권6호
    • /
    • pp.33-39
    • /
    • 2005
  • A thermal vapor compressor in which the subsonic/supersonic flow appears simultaneously, has been accurately designed through the CFD analysis for the various shape parameters such as the primary nozzle shape, converging duct shape, mixing tube diameter, and so on. The performance of the developed thermal vapor compressor has been experimentally verified to be installed in a Multi Effect Desalination(MED) plant as an important element. In this paper, the effects of each parameter are discussed on the basis of CFD results and the experimental results for various boundary conditions(motive pressure, suction pressure, and discharge pressure) are presented in compared with CFD results. The two results show a good agreement with each other within 2 % accuracy with regard to the entrainment ratio.

밸브 구동용 고속 리니어 액추에이터 (A Design of High-Speed Linear Actuator for Valve)

  • 성백주
    • 유공압시스템학회논문집
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 2011
  • The main design factors which effect on operating speed of linear actuator for valve operation are mass of plunger, electromagnetic motive force, inductance, and return spring, and these factors are not independent but related with each other in view point of design and electromagnetic theory. It is impossible to increase the operating speed by only change the value of any one design factor. The change of any one value results in change of any value related it in various design factors. This paper presents a speed increasing method of linear actuator using a solenoid design method by some governing equations which are composed of electromagnetic theory and empirical knowledge and permanent magnets as assistant material, and proved the propriety by experiments.

20 kW EP-OTEC 터빈 공력 설계 (20 kW Turbine Aerodynamic Design for EP-OTEC System)

  • 서종범;한상조
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.26-31
    • /
    • 2017
  • In the present study, 20 kW turbine for OTEC with a ejector and a motive pump is designed and performance prediction is implemented by means of CFD. The meridional analysis for initial geometry and CFD for detail design are used to design the turbine. This turbine has about 90.9% efficiency and 28.47 kW power at 15,000 rpm and pressure ratio of 1.53. Homogeneous mixture model is used because two phase flow can be occurred in the turbine. Performance evaluation is carried out and then results are presented by plotting of power, mass flow rate and efficiency as varying pressure ratio and rotational speed.

이차목 이젝터/디퓨저 시스템을 통하는 초음속 유동에 관한 수치해석적 연구 (Numerical Study on Supersonic Flow in the Second Throat Ejector-Diffuser System)

  • 김희동;이영기;서태원;김윤곤
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제10회 학술강연회논문집
    • /
    • pp.14-14
    • /
    • 1998
  • The ejector is a device which employs a high-velocity primary motive fluid to entrain and accelerate a slower moving secondary suction fluid. The resulting kinetic energy of the mixture is subsequently used for self-compression to a higher pressure, thus performing the function of a compressor. The outstanding advantages of the ejectors are simplicity and reliability. However the industrial use of ejectors has been confined mainly to very particular cases of operation. The experimental results obtained so far were insufficient to be made use of general cases. Large-sized modern ejectors, mainly driven by high powered air-compressors and designed for very wide ranges of operating conditions, cannot be based on the earlier research results, if we wish to be sure of the final outcome.

  • PDF

태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석 (Analysis of the ejector for low-pressure evaporative desalination system using solar energy)

  • 황인선;주홍진;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

선박용 Ejector의 직관부와 디퓨저 길이 변화에 따른 성능비교 및 유동특성에 관한 연구 (The evaluation of performance and flow characteristics due to the length of throat and diffuser for ship's ejector)

  • 이영호;김문오;김창구;김유택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.31-38
    • /
    • 2014
  • 이젝터는 고압의 주유동을 통해 저압의 부유동을 이동시키는 단순한 장치이다. 이젝터의 효율은 주방향으로 작동하는 다른 이송 장치에 비해 매우 낮다. 그러나 구동장치가 없어 간단한 구조를 가지고 있으며, 낮은 구동에너지로 많은 양의 유체를 이송시킬 수 있는 장점을 가지고 있다. 본 연구에서는 선박에서 많이 사용되고 있는 side-type 액체용 이젝터에 작동유체의 유량을 변화시키면서 정상, 비압축성 유동에 대해 실험 및 CFD 분석을 통하여 직관부 및 디퓨저의 길이변화에 따른 이젝터의 유동 패턴과 흡입 현상을 분석하였다.