In this paper, we evaluated prediction accuracy of Euler angle spectrograph classification method using a convolutional neural networks (CNN) for hand gesture recognition in augmented reality (AR) cognitive rehabilitation system based on Leap Motion Controller (LMC). Hand gesture recognition methods using a conventional support vector machine (SVM) show 91.3% accuracy in multiple motions. In this paper, five hand gestures ("Promise", "Bunny", "Close", "Victory", and "Thumb") are selected and measured 100 times for testing the utility of spectral classification techniques. Validation results for the five hand gestures were able to be correctly predicted 100% of the time, indicating superior recognition accuracy than those of conventional SVM methods. The hand motion recognition using CNN meant to be applied more useful to AR cognitive rehabilitation training systems based on LMC than sign language recognition using SVM.
Recently, for satisfying many application demands such as coding delay, computing power, transporting channel characteristic, etc, many profiles are supported in video coding standards. Therefore, in transcoding between same standards or between other standards, the functional difference of profiles supported by application occur many problems. In this paper, transcoding MPEG-2 main profile to H.264/AVC baseline profile which has restriction in the number of reference frame is focused. In this case, the bidirectional prediction supported in MPEG-2 main profile is not supported in H.264/AVC baseline profile. Also, in the restriction of reference frame, motion vectors in the MPEG-2 decoder as predictor should be adjusted. In this paper, the proposed algorithm is based on the characteristic of which motion. vector is uniform according to the distance from reference frame. The adaptive search techniques through the determination of the uniformity extremely reduce the computational complexity.
최근 JVET(Joint Video Experts Team)는 새로운 비디오 압축 표준을 VVC(Versatile Video Coding)으로 이름 짓고 2020 년 완료를 목표로 그 표준화를 시작하였다. HEVC 및 VVC 에서는 화면간 예측의 부호화 효율을 위하여 공간적/시간적 주변블록의 움직임 정보로부터 Merge/AMVP(Advanced Motion Vector Prediction)의 후보 리스트를 구성하고 최적의 움직임 정보를 활용한다. 본 논문에서는 Merge/AMVP 의 후보 리스트를 유도할 때, 현재블록의 모양을 고려하여 상관성이 높은 주변블록의 움직임 정보를 우선 순위로 유도하는 기법을 제안한다. 실험을 통하여 VTM(VVC TM) 대비 제안기법의 성능을 확인한다.
본 논문에서는 스테레오 동영상 CODEC (Coder and decoder)을 위한 효율적인 변이와 움직임의 동시추정 기법을 제안한다. 동시 추정 기법은 좌우 움직임 벡터와 이전 시점의 변이 벡터를 이용해서 현재 시점의 변이 벡터를 예측한다. 하지만 동시추정 기법은 추정 오류가 축적되고 가려진 영역으로 인해 벡터들이 잘못 추정될 경우 성능이 매우 떨어질 수가 있다. 이런 문제점을 해결하기 위해서 동시추정 기법과 별도로 공간적인 변이 벡터의 예측을 수행한다. 즉, 동시 추정과 공간적인 변이 벡터의 예측을 통해서 정확한 변이 벡터들을 구해내어 전체 부호화 효율을 높일 수 있다. 마지막으로 본 논문에서는 역방향 사진트리 분할 기법을 제안한다. 역방향 사진트리 분할 기법은 사진트리 분할 정보를 보내지 않고도 상세한 변이맵을 얻어낼 수 있기 때문에 변이 보상의 성능을 높일 수 있었다. 실험 결과를 통해서 제안 알고리듬이 기존 알고리듬과 비교하여 수행시간이 9배가량 감소하고 주관적 화질에서 좋은 결과를 보임을 확인하였고 객관적 화질 평가에서 0.5~1.5dB가량 PSNR이 높아짐을 확인하였다.
본 논문은 움직임 벡터와 함께 Coding Unit (CU)의 분할 정보를 표현하기 위해 쿼드트리 기반의 Coding Unit Tree (CUT)를 제안한다. 새로운 동영상 국제 표준안인 High Efficiency Video Coding (HEVC)는 높은 압축 효율을 위해 다양한 새로운 기술들을 채택하였다. 그리고 CU, prediction Unit (PU), 와 Transform Unit (TU)라는 분할 개념을 도입하였다. 그중 기본 부호화 단위인 CU는 H.264/AVC의 매크로 블록보다 다양한 크기를 제공하며 계층적인 구조를 가지고 있으며 쿼드트리 기반의 영상을 분할하고 처리한다. 이러한 구조는 유연성과 최적화를 이룰 수 있는 기반을 제공하고 있으나, 분할 정보에 대한 오버헤더가 발생한다. 복잡한 움직임 정보가 발생하면, 해당하는 정보를 전송하기 위해 다양한 신호가 발생한다. 본 논문에서는 이러한 다양한 신호들을 분석하고, 중복되는 정보를 제거하기 위한 알고리즘을 제안한다. 제안하는 알고리즘 은 기본 블록인 $2{\times}2$ 블록을 기준으로 계층적인 구조를 제안한다. 제안하는 알고리즘은 쿼드트리 기반의 타입 코드로 영상을 구조를 나타내고, 대표 값과 잔여 값으로 각 노드의 값을 표현한다. 결과에서 제안하는 알고리즘이 HM1.0보다 13.6% 압축 향상을 보여준다.
고효율 영상 부호화 기술인 high efficiency video coding (HEVC)은 부호화 효율을 높이기 위하여 coding tree unit (CTU)을 사용한다. CTU는 coding unit (CU), prediction unit (PU), transform unit (TU)으로 구성되며 모든 가능한 경우의 CU, PU, TU 분할연산을 통해 최적의 분할 조합을 찾아내게 된다. 블록 분할 연산의 복잡도를 감소시키기 위하여 본 논문은 움직임 벡터에 의한 관심 영역 CTU 추출에 근거하는 PU 분할 결정 방법과 이전에 부호화된 프레임의 같은 위치의 CTU 정보를 사용하는 CU 깊이 결정 분할 알고리즘을 제안한다. 첫 번째 방법은 프레임 중 움직임이 많은 동적 CTU 부분과 움직임이 적은 정적 CTU 부분으로 나누어 정적인 영역에 대해 PU 분할 연산을 감소시키는 방법이며, 두 번째 방법은 이전 프레임의 CTU 깊이 정보를 기반으로 현재 CTU의 분할 깊이를 미리 예측하여 CU 분할 연산을 감소시킨다. 결과적으로 제안하는 알고리즘은 HEVC test model (HM) 14.0 버전 대비 BDBR 손실은 2.5% 발생했지만, 전체 부호화 시간이 약 44.8%로 크게 감소했다.
본 논문의 주요 목표는 고성능 SVP(Stack-based Video Processor)를 설계하는 것이다. SVP는 과거에 제안된 스택 머신과 영상 프로세서의 최적의 측면만을 선택함으로써 더 좋은 구조를 갖도록 하는 포괄적인 구조이다. 본 구조는 객체 지향형 프로그램의 소규모의 많은 서브루틴을 가지고 있기 때문에 스택 버퍼를 갖는 준범용 S-RISC(Stack-based Reduced Instruction Set Comuter)를 이용하여 객체 지향형 영상 데이터를 처리한다. 그리고 MPEG-4의 반화소 단위 처리와 고급 모드 움직임 보상, 움직임 예측, SA-DCT(Shape Adaptive-Discrete Cosine Transform)가 가능하며, 절대값기, 반감기를 가지고 있어서 부호화하기로 확장할 수 있도록 하였다. SVP는 0.6㎛ 3-메탈 계층 CMOS 표준 셀 기준을 이용하여 설계되었으며, 110K 로직 게이트와 12Kbit SRAM 내부 버퍼로 이루어지고 50 MHz의 동작 속도를 가진다 . MPEG-4의 VLBL(Very Low Bitrate Video) 최대 전송율인 QCIF 15fps(frame per second)로 영상 재생 알고리즘을 수행한다.
The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.
동영상에서의 객체 추적은 보안, 색인 및 검색, 감시, 통신, 압축 등 다양한 분야에서 중요하다. 본 논문은 HEVC 비트스트림 상에서의 객체 추적 방법을 제안한다. 복호화를 수행하지 않고, 비트스트림 상에 존재하는 움직임 벡터(MV : Motion Vector)와 부호화 크기 정보를 Spatio-Temporal Markov Random Fields (ST-MRF) 모델에 적용해 객체 움직임의 공간적 및 시간적 특성을 반영한다. 변환계수를 특징점으로 활용하는 객체형태 조정 알고리즘을 적용해 ST-MRF 모델 기반 객체 추적방법에서 나타나는 과분할에 의한 오차전파 문제를 해결한다. 제안하는 방법의 추적성능은 정확도 86.4%, 재현율 79.8%, F-measure 81.1%로 기존방법 대비 평균 F-measure는 약 0.2% 향상하지만 기존방법에서 과분할 및 오차전파가 두드러지는 영상에 대해서는 최대 9% 정도의 성능향상을 보인다. 전체 수행시간은 프레임 당 평균 5.4ms이며 실시간 추적이 가능하다.
4K이상의 초고해상도 영상의 수요가 증가함에 따라 복호화기가 요구하는 데이터 처리량이 늘어났으며, 이에 따라 소비자가 관심을 가지는 영역만을 복호화하는 방법의 필요성이 대두되었다. 이러한 관심영역을 독립적으로 복호화할 수 있는 방법에는 영상을 분할하여 분할된 각각의 영상을 부호화하는 방법과 HEVC(High Efficiency Video Coding)의 Tile기반 부호화를 이용할 수 있다. 본 논문에서는 이러한 영상 분할기반 부호화와 Tile 분할기반 부호화를 통해 관심영역의 독립적인 복호화를 수행할 수 있는 방법을 제안하고 각각의 성능을 분석한다. 실험결과에서는 제안방법의 결과로 부호화된 영상에 대해서 관심영역의 독립적 복호화가 가능함을 보이고 각 방법의 특징을 비교분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.