• Title/Summary/Keyword: Motion vector estimation

Search Result 365, Processing Time 0.025 seconds

3D Facial Synthesis and Animation for Facial Motion Estimation (얼굴의 움직임 추적에 따른 3차원 얼굴 합성 및 애니메이션)

  • Park, Do-Young;Shim, Youn-Sook;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.618-631
    • /
    • 2000
  • In this paper, we suggest the method of 3D facial synthesis using the motion of 2D facial images. We use the optical flow-based method for estimation of motion. We extract parameterized motion vectors using optical flow between two adjacent image sequences in order to estimate the facial features and the facial motion in 2D image sequences. Then, we combine parameters of the parameterized motion vectors and estimate facial motion information. We use the parameterized vector model according to the facial features. Our motion vector models are eye area, lip-eyebrow area, and face area. Combining 2D facial motion information with 3D facial model action unit, we synthesize the 3D facial model.

  • PDF

Infrared Thermal Video Stabilization Performance Comparison (열화상 영상 안정화 성능 비교)

  • Park, Chan-hyeok;Kwon, Hyuk-shin;Kang, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.101-104
    • /
    • 2015
  • Motion vector is that comparing a frame between previous frame and current one about how much moved. Using this motion vector, if move the image object of current frame to former frame, it could be corrected to shake from hand and camera shaking. On this thesis, compared efficiency of block matching using SAD(Sum of Absolute Difference) equation as picking out the motion vector, matching using phase correlation, matching using feature point, block matching using bitplane.

  • PDF

A Fast Motion Estimation Algorithm with Motion Analysis (움직임 해석을 통한 고속 움직임 예측 알고리즘)

  • Jun, Young-Hyun;Yun, Jong-Ho;Cho, Hwa-Hyun;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • We present an efficient block-based motion estimation algorithm with motion analysis. The motion analysis determines a size of search pattern and a maximum repeated count of search pattern. In case of large movement in large image, we reduce search points and the local minimum which caused by low performance. The proposed algorithm employs with searching step of 2. The first step determines an initial search point with neighbor block vector and a size of initial search pattern. The second step determines a size of search pattern and a maximum repeated count with motion analysis. We improve motion prediction accuracy while reducing required computational complexity compared to other fast block-based motion estimation algorithms.

  • PDF

Frame Interpolation using Dominant MV (우세 움직임 벡터를 이용한 프레임 보간 기법)

  • Choi, Seung-Hyun;Lee, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.123-131
    • /
    • 2009
  • The emerging display technology has been replaced the previous position of the CRT with the LCD. The nature of hold type display such as LCD, however, causes many problems such as motion blur and motion judder. To resolve the problems, we used frame interpolation technique which improves the image quality by inserting new interpolated frames between existing frames. In this paper, we propose a novel frame interpolation technique that uses dominant MV and variance different value in each block. At first, the proposed algorithm performs unidirectional motion estimation using blocking matching algorithm. The new frame is generated by pixel average using compared block variance or by pixel motion compensation using dominant motion vector, whether the motion estimation find the target area or not. Several experiments with the proposed algorithm shows that the proposed algorithm has better image quality than the existing bidirectional frame interpolation algorithm at the rate of about 3dB PSNR and has low complexity comparing to the unidirectional frame interpolation technique.

Fast Reference Frame Selection Algorithm Based on Motion Vector Reference Map (움직임 벡터 참조 지도 기반의 고속 참조 영상 선택 방법)

  • Lee, Kyung-Hee;Ko, Man-Geun;Seo, Bo-Seok;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.28-35
    • /
    • 2010
  • The variable block size motion estimation (ME) and compensation (MC) using multiple reference frames is adopted in H.264/AVC to improve coding efficiency. However, the computational complexity for ME/MC increases proportional to the number of reference frames and variable blocks. In this paper, we propose a new efficient reference frame selection algorithm to reduce the complexity while keeping the visual quality. First, a motion vector reference map is constructed by SAD of $4{\times}4$ block unit for multi reference frames. Next, the variable block size motion estimation and motion compensation is performed according to the motion vector reference map. The computer simulation results show that the average loss of BDPSNR is -0.01dB, the increment of BDBR is 0.27%, and the encoding time is reduced by 38% compared with the original method for H.264/AVC.

A Fast Multilevel Successive Elimination Algorithm (빠른 다단계 연속 제거 알고리즘)

  • Soo-Mok Jung
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.10
    • /
    • pp.761-767
    • /
    • 2003
  • In this paper, A Fast Multi-level Successive Elimination Algorithm (FMSEA) is presented for block matching motion estimation in video coding. Motion estimation accuracy of FMSEA is equal to that of Multilevel Successive Elimination Algorithm(MSEA). FMSEA can reduce the computations for motion estimation of MSEA by using partial distortion elimination technique. The efficiency of the proposed algorithm was verified by experimental results.

  • PDF

A New Fast Motion Estimation Algorithm Based on Block Sum Pyramid Algorithm

  • Jung, Soo-Mok
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.147-156
    • /
    • 2004
  • In this paper, a new fast motion estimation algorithm which is based on the Block Sum Pyramid Algorithm(BSPA) is presented. The Spiral Diamond Mesh Search scheme and Partial Distortion Elimination scheme of Efficient Multi-level Successive Elimination Algorithm were improved and then the improved schemes were applied to the BSPA. The motion estimation accuracy of the proposed algorithm is nearly 100% and the cost of Block Sum Pyramid Algorithm was reduced in the proposed algorithm. The efficiency of the proposed algorithm was verified by experimental results.

  • PDF

Fuzzy Logic Based Temporal Error Concealment for H.264 Video

  • Lee, Pei-Jun;Lin, Ming-Long
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.574-582
    • /
    • 2006
  • In this paper, a new error concealment algorithm is proposed for the H.264 standard. The algorithm consists of two processes. The first process uses a fuzzy logic method to select the size type of lost blocks. The motion vector of a lost block is calculated from the current frame, if the motion vectors of the neighboring blocks surrounding the lost block are discontinuous. Otherwise, the size type of the lost block can be determined from the preceding frame. The second process is an error concealment algorithm via a proposed adapted multiple-reference-frames selection for finding the lost motion vector. The adapted multiple-reference-frames selection is based on the motion estimation analysis of H.264 coding so that the number of searched frames can be reduced. Therefore the most accurate mode of the lost block can be determined with much less computation time in the selection of the lost motion vector. Experimental results show that the proposed algorithm achieves from 0.5 to 4.52 dB improvement when compared to the method in VM 9.0.

  • PDF

A New East Multiresolution Motion Estimation In the Wavelet Detail Level

  • Kim, Kwang-Yong;Lee, Kyeong-Hwan;Lee, Tae-Ho;Kim, Duk-Gyoo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.807-810
    • /
    • 2000
  • In this paper, a new hierarchical motion estimation (ME) scheme using the wavelet transformed multi-resolution image layers is proposed. While the coarse-to-fine (CtF) ME, used in previously proposed coding schemes, can provide a better estimate at the coarsest resolution, it is difficult to accurately track motion at finer resolution. On the other hand, in fine-to-coarse (FtC) ME, it can solves this local minima problem by estimating motion track at the finest subband and propagating the motion vector (MV) to coarser subband. But this method causes to higher computational overhead. This paper proposes a new method for reducing the computational overhead of fine-to-coarse rnulti-resolution motion estimation (MRME) at the finest resolution level by searching for the region to consider motion vectors of the coarsest resolution subband.

  • PDF

Improved Bi-directional Symmetric Prediction Encoding Method for Enhanced Coding Efficiency of B Slices (B 슬라이스의 압축 효율 향상을 위한 개선된 양방향 대칭 예측 부호화 방법)

  • Jung, Bong-Soo;Won, Kwan-Hyun;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.14 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • A bi-directional symmetric prediction technique has been developed to improve coding efficiency of B-slice and to reduce the computational complexity required to estimate two motion vectors. On the contrary to the conventional bi-directional mode which encodes both forward and backward motion vectors, it only encodes a single forward motion vector, and the missing backward motion vector is derived in a symmetric way from the forward motion vector using temporal distance between forward/backward reference frames to and from the current B picture. Since the backward motion vector is derived from the forward motion vector, it can halve the computational complexity for motion estimation, and also reduces motion vector data to encode. This technique always derives the backward motion vector from the forward motion vector, however, there are cases when the forward motion vector is better to be derived from the backward motion vector especially in scene changes. In this paper, we generalize the idea of the symmetric coding with forward motion vector coding, and propose a new symmetric coding with backward motion vector coding and adaptive selection between the conventional symmetric mode and the proposed symmetric mode based on rate-distortion optimization.