• 제목/요약/키워드: Motion trajectory

검색결과 679건 처리시간 0.031초

피드백 오차 학습법을 이용한 궤적추종제어

  • 성형수;이호걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.466-471
    • /
    • 1994
  • To make a dynamic system a given desired motion trajectory, a new feedback error learning scheme is proposed which is based on the repeatability of dynamic system motion. This method is composed of feedforward and feedback control laws. A benefit of this control scheme is that the input pattern that generates the desired motion can be formed without estimating the physical parameters of system dynamics. The numerical simulations show the good performance of the proposed scheme

  • PDF

자동 타임 워핑에 기반한 온라인 궤적 최적화 (On-line Trajectory Optimization Based on Automatic Time Warping)

  • 한다성;노준용;신성용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권3호
    • /
    • pp.105-113
    • /
    • 2017
  • 본 논문에서는 물리 기반 가상 환경에서 참조 동작을 추적하는 캐릭터 동작을 생성할 때 캐릭터 동작에 대한 최적화와 함께 참조 동작에 대한 타임 워핑(time warping)을 동시에 수행할 수 있는 새로운 온라인 궤적 최적화(trajectory optimization) 기법을 제안한다. 일반적으로 참조 동작에 대한 샘플링 시간이 균일한 간격으로 고정되어 있는 기존의 물리 기반 캐릭터 애니메이션 기법과는 달리, 본 논문에서 제안하는 방법은 캐릭터 동작의 물리적 변화와 함께 샘플링 시간의 변화를 동시에 최적화 시킴으로써 외력에 대해 더욱 효과적으로 대응할 수 있는 참조 동작에 대한 최적의 타임 워핑을 찾아낸다. 이를 위해, 전신 캐릭터(full-body character)의 동역학과 함께 참조 동작에 대한 샘플링 시간의 변화를 함께 고려한 최적 제어 문제(optimal control problem)를 정형화하고 이 문제를 실행 시간에 시간 축을 따라 이동하는 고정된 크기의 시간 윈도우에 대해 반복적으로 풂으로써 캐릭터 동작과 샘플링 시간에 대한 최적 제어 정책(optimal control policy)을 생성하는 모델예측제어(model predictive control) 프레임워크를 제안한다. 실험을 통해, 제안된 프레임워크가 하나의 참조 동작만으로 외력에 대해 강인하게 반응하는 동작을 생성하고, 배경 음악에 따라 리드미컬한 동작을 생성하는데 효과적임을 보여준다.

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

궤도계획에 의한 수동모드의 효율적 배합에 관한 연구 (A study on an efficient combination of the manual mode according to trajectory planning)

  • 이순요;;;권규식;오제상
    • 대한인간공학회지
    • /
    • 제6권1호
    • /
    • pp.25-32
    • /
    • 1987
  • The paesent paper deals with obtaining the properly mixed application critaeia for the manual mode, using computer graphic simulation, in order to recover the error effectively occurring in the advanced teleoperator work of man-robot system. In these experiments the error which is occurred during performing the automatic mode is recovered by the manual mode which is combined properly the operation by hyman with the operation by control program. The result shows an improvement availibility of the system by not only establishing an efficient combination of the manual mode according to trajectory planning but also recovering the error effectively. Therefore we suggest that the operation by control program should be applied in macro motion of control and the operation by human in micro motion of control.

  • PDF

운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상 (Adaptability Improvement of Learning from Demonstration with Particle Swarm Optimization for Motion Planning)

  • 김정중;이주장
    • 한국산업융합학회 논문집
    • /
    • 제19권4호
    • /
    • pp.167-175
    • /
    • 2016
  • We present a method for improving adaptability of Learning from Demonstration (LfD) strategy by combining the LfD and Particle Swarm Optimization (PSO). A trajectory generated from an LfD is modified with PSO by minimizing a fitness function that considers constraints. Finally, the final trajectory is suitable for a task and adapted for constraints. The effectiveness of the method is shown with a target reaching task with a manipulator in three-dimensional space.

Airplanes at constant speeds on inclined circular trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • 제3권4호
    • /
    • pp.399-425
    • /
    • 2016
  • The dynamical requirements are obtained for airplanes to travel on inclined circular trajectories. Formulas are provided for determining the load factor, the bank angle, the lift coefficient and the thrust or power required for the motion. The dynamical properties of the airplane are taken into account, for both, airplanes with internal combustion engines and propellers, and airplanes with jet engines. A procedure is presented for the construction of tables from which the flyability of trajectories at a given angle of inclination can be read, together with the corresponding minimum and maximum radii allowed. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and a F-16 jet airplane.

최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석 (Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method)

  • Kim, C.B.;Lee, S.H.
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

두발 로봇의 계단 보행궤적 생성방법 (Trajectory generation method for bipedal walking on the stairs)

  • 박찬수;최종호;하태신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.172-174
    • /
    • 2006
  • In this paper, we propose the trajectory generation method for bipedal walking on the stairs. This method is based on multi-masses inverted pendulum mode (MMIPM). MMIPM can effectively reduce the ZMP error but it is only applied to walking on the flat ground. In order to reduce ZMP error when a robot walks on the stairs, we generate the walking motion by MMIPM and modify that motion using parametric functions. We determine the values of the parameters by the simulations. Simulation results show that the robot can walk more stable on the stairs.

  • PDF

컨베이어 추적을 위한 로보트 매니퓰레이터의 계층적 제어구조 (A hierachical control structure of a robot manipulator for conveyor tracking)

  • 박태형;이영대;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1046-1051
    • /
    • 1991
  • For the conveyor tracking application of a robot manipulator, a new control scheme is presented. The presented scheme is divided into two stages : the upper one is the motion planning stage and the lower one is the motion control stage. In the upper stage, the nominal trajectory which tracks the part moving in a constant velocity, is planned considering the robot arm dynamics. On the other hand, in the lower level, the perturbed trajectory is generated to track the variation in the velocity of conveyor belt via sensory feedback and the perturbed arm dynamics. In both stages, the conveyor tracking problem is formulated as an optimal tracking problem, and the torque constraints of a robot manipulator are taken into account. Simulation results are then presented and discussed.

  • PDF

Dynamic Walking of a Biped Robot

  • 마영;손영익;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.138-140
    • /
    • 2004
  • This paper mainly deals with the dynamic walking of a biped robot. At first, in order to walk in various environments, it is desirable to adapt to such ground conditions with a suitable foot motion, and maintain the stability of the robot by a smooth hip motion. A method to plan a walking pattern consisting of a foot trajectory and a hip trajectory is presented. The effectiveness of the proposed method is illustrated by simulation results. Secondly, the paper brings forward a balance control technique based on off-line walking pattern with real-time modification. At last, the concept of Zero Moment Point (ZMP) is used to evaluate dynamic stability.

  • PDF