• Title/Summary/Keyword: Motion time

Search Result 5,252, Processing Time 0.036 seconds

Characterization of Motion Interpolation in 120Hz Systems

  • Shin, Byung-Hyuk;Kim, Kyung-Woo;Park, Min-Kyu;Berkeley, Brian H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.681-684
    • /
    • 2008
  • Motion interpolation is adopted and has been spread widely into market since it is effective in reducing motion blur, which is considered as weak characteristic due to slow response time of liquid crystal and hold-type display. 120Hz driving using interpolated frames achieves better moving picture quality with less motion blur and less motion judder. However, errors in the interpolated frames can cause visual artifacts such as static text breakup, halos, and occlusions. This paper focuses on categorizing characteristics of visual artifacts and on reducing side-effects by using information from original frames in special cases.

  • PDF

Numerical Flow Visualization of Cyclic Motion of a Fling-Clapping Wing (프링-크래핑 날개의 주기적 운동에 관한 수치적 흐름 가시화)

  • Chang, Jo-Won;Sohn, Myong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1511-1520
    • /
    • 2004
  • A flow visualization of the two-dimensional rigid fling-clap motions of the flat-plate wing are performed to gain knowledge of butterfly mechanisms that might be employed by butterflies during flight. In this numerical visualization, the time-dependent Navier-Stokes equations are solved for cyclic fling and clap types of wing motion. The separation vortex pair that is developed in the fling phase of the cyclic fling and clap motion is observed to be stronger than those of the fling followed by clap and pause motion(1st cycle motion). This stronger separation vortex pair in the fling phase is attributable to the separation vortex pair of the outside space developed in the clap phase as it moves into the opening in the following fling phase. Accordingly, higher lift and power expenditure coefficients in the fling after clap phase is caused by the stronger separation vortex pair.

Development of the Servo Motion Controller using Gyro Sensor (Gyro Sensor 제어용 Servo Motion 제어기 개발)

  • Lee, Won-Bu;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.493-497
    • /
    • 2010
  • Real time coordinate conversion of vessel was realized, we developed motion control algorithm of DC Servo Motor. We made servo control circuit and PCB, also We developed the system using 3-axis Gyro Sensor based Servo Motion Controller. For ship's movement simulation, we made the ship simulator of 6 degree of freedom. With a mounted camera on developed simulator, We tested the desired ship's movement, and the desired result of error tolerance was obtained.

Kinodynamic Motion Planning with Artificial Wavefront Propagation

  • Ogay, Dmitriy;Kim, Eun-Gyung
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.274-281
    • /
    • 2013
  • In this study, we consider the challenges in motion planning for automated driving systems. Most of the existing online motion-planning algorithms, which take dynamics into account, find it difficult to operate in an environment with narrow passages. Some of the existing algorithms overcome this by offline preprocessing if environment is known. In this work an online algorithm for motion planning with dynamics in an unknown cluttered environment with narrow passages is presented. It utilizes an idea of hybrid planning with sampling- and discretization-based motion planners, which run simultaneously in a full configuration space and a derived reduced space. The proposed algorithm has been implemented and tested with a real autonomous vehicle. It provides significant improvements in computational time performance over basic planning algorithms and allows the generation of smoother paths than those generated by the recently developed hybrid motion planners.

Effects of Vertical Ground Motion on Rocking Response of Free Standing Structure (연직지반운동이 자립형 구조체의 Rocking 거동에 미치는 영향)

  • 최인길;전영선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.169-176
    • /
    • 1997
  • In this study, vertical ground motion effects on rocking response of free standing structure are investigated. Based on the mathematical model, computer program is developed using Kutta's Fourth-Order Method. Using the program, several parametric studis are performed to predict the effects of vertical ground motion. From the results of this study, it can be found that the vertical ground motion may overturn the structure which is stable under the horizontal ground motion, stabilize the structure which overturns due to horizontal ground motion alone, and delay the time of overturning of the structure or greatly reduce the rocking of the structure. It is concluded that the effect of vertical ground motion on the rocking response of free standing structure is apparently not systematic.

  • PDF

Full Search Equivalent Motion Estimation Algorithm for General-Purpose Multi-Core Architectures

  • Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.13-18
    • /
    • 2013
  • Motion estimation is a key technique of modern video processing that significantly improves the coding efficiency significantly by exploiting the temporal redundancy between successive frames. Thread-level parallelism is a promising method to accelerate the motion estimation process for multithreading general-purpose processors. In this paper, we propose a parallel motion estimation algorithm which parallelizes the motion search process of the current H.264/AVC encoder. The proposed algorithm is implemented using the OpenMP application programming interface (API) and can be easily integrated into the current encoder. The experimental results show that the proposed parallel algorithm can reduce the processing time of the motion estimation up to 65.08% without any penalty in the rate-distortion (RD) performance.

Hierachically Regularized Motion Estimation Technique (계층적 평활화 방법을 이용한 움직임 추정 알고리듬)

  • 김용태;임정은;손광훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1889-1896
    • /
    • 2001
  • This paper proposes the hierachically regularized motion estimation technique for the efficient and accurate motion estimation. To use hierachical technique increases the reliability of motion vectors. And the regularization of neighbor vectors decreases bit rate of motion vectors. Also, using fast motion estimation algorithm with a few candidate vectors, the processing time added by regularization can be decreased. In the result of the experiment, the fast motion estimation with hierachical regularization technique achieves less computations and decreases estimation and distribution of false vectors.

  • PDF

Assessment of the Strong Motion Duration Criterion of Synthetic Accelerograms (내진설계를 위한 인공지진파 강진지속시간 기준의 평가)

  • Huh, Jung-Won;Jung, Ho-Sub;Kim, Jae-Min;Chung, Yun-Suk
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.133-140
    • /
    • 2006
  • This paper addresses a fundamental research subject to complement and improve current domestic design specifications for the strong motion duration criterion and the envelop function of artificial accelerograms that can be applied to the earthquake-proof design of nuclear structures. The criteria for design response spectra and strong motion duration suggested by WRC RG 1.60 and ASCE Standard 4-98 are commonly being used in the profession, and they are first compared with each other and reviewed. By applying 152 real strong earthquake records that are over magnitude of 5 in the rock sites to the strong motion duration criterion in ASCE 4-98, an empirical regression model that predicts the strong motion duration as a function of earthquake magnitude is then developed. Using synthetically generated earthquake time histories for the five cases whose strong motion durations vary from 6 to 15 seconds, a seismic analysis is conducted to identify effects of the strong motion durations on the seismic responses of nuclear structures.

  • PDF

Research on Effective Feature Vector Configuration for Motion Matching in Locomotive Motion Generation (보행 동작 생성을 위한 모션 매칭의 효과적인 특징 벡터 설정에 관한 연구)

  • Sura Kim;Sang Il Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.159-166
    • /
    • 2023
  • This paper investigates effective methods for implementing motion matching, which is actively used in real-time motion generation applications. The success of motion matching heavily hinges on its simple definition of a feature vector, yet this very definition can introduce significant variance in the outcomes. Our research focuses on identifying the optimal combination of feature vectors that effectively generates desired trajectories in locomotion generation. To this end, we experimented with a range of feature vector combinations and performed an in-depth error analysis to evaluate the results.

A Mathematical Approach to Time-Varying Obstacle Avoidance of Robot manipulators (로보트의 시변 장애물 회피를 위한 수학적 접근 방법)

  • 고낙용;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.809-822
    • /
    • 1992
  • A mathematical approach to solving the time-varying obstacle avoidance problem is pursued. The mathematical formulation of the problem is given in robot joint space(JS). View-time concept is used to deal with time-varying obstacles. The view-time is the period in which a time-varying obstacles. The view-time is the period in which a time-varying obstacle is viewed and approximated by an equivalent stationary obstacle. The equivalent stationary obstacle is the volume swept by the time-varying obstacle for the view-time. The swept volume is transformed into the JS obstacle that is the set of JS robot configurations causing the collision between the robot and the swept volume. In JS, the path avoiding the JS obstacle is planned, and a trajectory satisfying the constraints on robot motion planning is planned along the path. This method is applied to the collision-free motion planning of two SCARA robots, and the simulation results are given.