• Title/Summary/Keyword: Motion time

Search Result 5,252, Processing Time 0.034 seconds

Real-time Interactive Particle-art with Human Motion Based on Computer Vision Techniques (컴퓨터 비전 기술을 활용한 관객의 움직임과 상호작용이 가능한 실시간 파티클 아트)

  • Jo, Ik Hyun;Park, Geo Tae;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • We present a real-time interactive particle-art with human motion based on computer vision techniques. We used computer vision techniques to reduce the number of equipments that required for media art appreciations. We analyze pros and cons of various computer vision methods that can adapted to interactive digital media art. In our system, background subtraction is applied to search an audience. The audience image is changed into particles with grid cells. Optical flow is used to detect the motion of the audience and create particle effects. Also we define a virtual button for interaction. This paper introduces a series of computer vision modules to build the interactive digital media art contents which can be easily configurated with a camera sensor.

Sloshing Flows in Ship Tanks

  • Kim, Yonghwan;Shin, Yung-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.3
    • /
    • pp.21-32
    • /
    • 2000
  • In the present paper, the sloshing flow in the liquid holds of a large tanker is simulated using a numerical method. In the fluid domain, the three-dimensional Navier-Stokes equation with free surface is solved using a finite difference method, and the realistic shapes of multi holds are modeled including the internal members. The time-history of the tank motion is obtained using a time-domain program for ship motion. In order to computer the impulsive pressures on internal structures, a concept of buffer zone is adopted near the tank ceiling during impact occurrence. This study demonstrates that the global fluid motion in the multi liquid holds of ships and FPSO's can be simulated using the numerical method and the corresponding local pressure can be predicted with reasonable accuracy.

  • PDF

Active Tactual Motion of Fingertips in FUUAI Evaluation Of Textile Fabrics

  • Lee, Su-Min;Kamijo, Masayoshi;Nishimatsu, Toyonori;Shimizu, Yoshio
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.190-194
    • /
    • 2002
  • Human uses sight, tactile sense to evaluate Total Hand Value(FUUAI) of textile fabrics. Tactile sense is important factor which decided the Total Hand Value of a textile fabric. When human feels the FUUAI, physical and physiological phenomena are occurred in finger. We first found out physical variable that is happened in fingertip when human is feeling the FUUAI. Such physical variable means characteristic of action tactual motion of finger such as moving range, tactile time, moved distance, speed of finger and applied force by finger. We study the relationship between action tactual motion and the ability in which the human distinguishes the textile fabric. As a result, we could know the characteristics of the tactual motion of fingertip to get high distinguishable ability. The characteristics were different in men and women respectively. In the case of man, touched time and moving range influenced to distinguish, and moving range, and the moving speed of finger influenced, in woman's case.

  • PDF

A Study on Fast Block Matching Algorithm for the Motion Vector Estimation (이동벡터 추정을 위한 고속 Block Matching Algorithm에 관한 연구)

  • 이인홍;박래홍
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.211-219
    • /
    • 1988
  • In this paper effective block matching algorithms are proposed to find the motion vector. There are two approaches to the estimation of the motion vector in MCC (motion compensated coding), i.e.pel(pixel element) recursive algorithm and block matching algorithm. The search algorithm in this paper is based on the block matching method. The advantage of this algorithm is the reduction of the computation time. In order to reduce the computation time, three mathods are proposed in this paper. These new algorithms are faster than other methods. Compared with the three step algorithm by Koga et al., the average ratio of the computational savings obtained from the proposed algorithm is about 3-4.

  • PDF

Image Processing for Video Images of Buoy Motion

  • Kim, Baeck-Oon;Cho, Hong-Yeon
    • Ocean Science Journal
    • /
    • v.40 no.4
    • /
    • pp.213-220
    • /
    • 2005
  • In this paper, image processing technique that reduces video images of buoy motion to yield time series of image coordinates of buoy objects will be investigated. The buoy motion images are noisy due to time-varying brightness as well as non-uniform background illumination. The occurrence of boats, wakes, and wind-induced white caps interferes significantly in recognition of buoy objects. Thus, semi-automated procedures consisting of object recognition and image measurement aspects will be conducted. These offer more satisfactory results than a manual process. Spectral analysis shows that the image coordinates of buoy objects represent wave motion well, indicating its usefulness in the analysis of wave characteristics.

Molecular Dynamics Simulation Study of Density Effects on Vibrational Dephasing in Diatomic Molecular Liquid $N_2$

  • Kwang-Jin Oh;Seung-Joon Jeon;Eok Kyun Lee;Tae Jun Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.118-122
    • /
    • 1994
  • Molecular dynamics simulation was carried out to study density effects on vibrational dephasing. Because of difficulty due to large time scale difference between vibrational motion and vibrational relaxation, we adopt adiabatic approximation in which the vibrational motion is assumed to be much faster than translational and rotational motion. As a result, we are able to study vibrational dephasing by simulating motion of rigid molecules. It is shown that the dephasing time is decreased as density increases and the contribution to this result is mainly due to the mean-squared frequency fluctuation.

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.

Abnormal Crowd Behavior Detection Using Heuristic Search and Motion Awareness

  • Usman, Imran;Albesher, Abdulaziz A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.131-139
    • /
    • 2021
  • In current time, anomaly detection is the primary concern of the administrative authorities. Suspicious activity identification is shifting from a human operator to a machine-assisted monitoring in order to assist the human operator and react to an unexpected incident quickly. These automatic surveillance systems face many challenges due to the intrinsic complex characteristics of video sequences and foreground human motion patterns. In this paper, we propose a novel approach to detect anomalous human activity using a hybrid approach of statistical model and Genetic Programming. The feature-set of local motion patterns is generated by a statistical model from the video data in an unsupervised way. This features set is inserted to an enhanced Genetic Programming based classifier to classify normal and abnormal patterns. The experiments are performed using publicly available benchmark datasets under different real-life scenarios. Results show that the proposed methodology is capable to detect and locate the anomalous activity in the real time. The accuracy of the proposed scheme exceeds those of the existing state of the art in term of anomalous activity detection.

A LAW OF ITERATED LOGARITHM FOR OCCUPATION TIME BROWNIAN IN ι$_2$

  • Cho, Nhan-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.3
    • /
    • pp.569-579
    • /
    • 1999
  • We consider a random measure defined by the occupation time of Brownian motion in $l_2$. If it is normalized ${\lambda}^2$log then we show that its cluster set as ${\lambda}{longrightarrow}\infty$ can be represented by Ι-function on $\sigma$-finite measure in $l_2$.

  • PDF

A Minimum time trajectory planning for robotic manipulators with input torque constraint (입력 토오크 constraint를 가진 로보트 매니플레이터에 대한 최소 시간 궤적 계획)

  • Hong, In-Keun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.445-449
    • /
    • 1989
  • Achievement of a straight line motion in the Cartesian space has a matter of great importance. Minimization of task execution time with linear interpolation in the joint space, accomplishing of a approximation of straight line motion in the Cartesian coordinate is considered as the prespecified task. Such determination yields minimum time joint-trajectory subject to input torque constraints. The applications of these results for joint-trajectory planning of a two-link manipulator with revolute joints are demonstrated by computer simulations.

  • PDF