• Title/Summary/Keyword: Motion representation

Search Result 194, Processing Time 0.021 seconds

Efficient Representation of Patch Packing Information for Immersive Video Coding (몰입형 비디오 부호화를 위한 패치 패킹 정보의 효율적인 표현)

  • Lim, Sung-Gyun;Yoon, Yong-Uk;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.126-128
    • /
    • 2021
  • MPEG(Moving Picture Experts Group) 비디오 그룹은 사용자에게 움직임 시차(motion parallax)를 제공하면서 3D 공간 내에서 임의의 위치와 방향의 시점(view)을 렌더링(rendering) 가능하게 하는 6DoF(Degree of Freedom)의 몰입형 비디오 부호화 표준인 MIV(MPEG Immersive Video) 표준화를 진행하고 있다. MIV 표준화 과정에서 참조 SW 인 TMIV(Test Model for Immersive Video)도 함께 개발하고 있으며 점진적으로 부호화 성능을 개선하고 있다. TMIV 는 여러 뷰로 구성된 방대한 크기의 6DoF 비디오를 압축하기 위하여 입력되는 뷰 비디오들 간의 중복성을 제거하고 남은 영역들은 각각 개별적인 패치(patch)로 만든 후 아틀라스에 패킹(packing)하여 부호화되는 화소수를 줄인다. 이때 아틀라스 비디오에 패킹된 패치들의 위치 정보를 메타데이터로 압축 비트열과 함께 전송하게 되며, 본 논문에서는 이러한 패킹 정보를 보다 효율적으로 표현하기 위한 방법을 제안한다. 제안방법은 기존 TMIV10.0 에 비해 약 10%의 메타데이터를 감소시키고 종단간 BD-rate 성능을 0.1% 향상시킨다.

  • PDF

Water force and the dynamics of pipes through innovative perspectives on flow and structure in fine art

  • Luchen Sun;A. Zamani Nouri;A. Yvaz
    • Membrane and Water Treatment
    • /
    • v.15 no.4
    • /
    • pp.177-183
    • /
    • 2024
  • The following paper outlines the strange juncture of scientific principles and artistic expression by showing how studies of water force and dynamics of pipes can influence or inspire contemporary fine art. The radial force exerted by the internal viscous fluid is calculated using the Navier-Stokes equation. This work ascertains the fluid mechanics and structural behavior that pipes undergo due to water forces and can be translated into the medium of painting and sculpture. This paper will analyze the dynamic interactions between water and pipes reinforced with nanoparticles, while at the same time searching for new forms of representation concerning motion, flux, and structure within art. Results indicate that an increase in nanoparticle content leads to a reduction in transient deflection. The work includes case studies of artworks that incorporate these scientific aspects and also provides a theoretical framework to understand how technical phenomena can be transformed into visual and conceptual forms in art.

Intelligent Motion Planning System for an Autonomous Mobil Robot (자율 이동 로봇을 위한 지능적 운동 계획 시스템)

  • 김진걸;김정찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1503-1517
    • /
    • 1994
  • Intelligent Motion Planning System(IMPS) is presented for a robot to achieve an efficient path toward the given target point in two dimensional unknown environment is constructed with unrestricted obstacle shapes. IMPS consists of three components for making intelligent motion. These components are real-time motion planning algorithm based on a discontinous boundary method, fuzzy neural network decision system for heuristic knowledge representation, and world modeling with forgetting and reinforcing memory cells. First of all, in real-time motion planning algorithm, the behavior-based architectural method is used to generate subgoal. A behavior generates a subgoal independently by using the method of discontinuous boundary in sensed area. The discontinuous boundary method is a new proposed fast obstacle avoidance algorithm. The second component is fuzzy neural network decision system for accomplishing the subgoal. The heuristic rules are imbedded on the fuzzy neural network to make an intelligent decision. The last one is a forgetting, reinforcing memory technique for the construction of external world map. The activation values of all activated memory cells in grid space are decreased monotonically and after all they are burned out. Therefore, after sufficient journey, robot can have a stationary world map even if the dynaic obstacles exist. Using the IMPS, several simulations show the efficient achievement of target point in unknown enviroment with obstcles of various shapes.

  • PDF

A Study on Wave Responses of Vertical Tension-Leg Circular Floating Bodies (연직인장계류된 원형부유체의 파랑응답에 관한 연구)

  • Lee, Kwang-Ho;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • In the present study, we proposed a new numerical wave tank model to analyze the vertical tension-leg circular floating bodies, using a 2-D Navier-Stokes solver. An IBM(Immersed Boundary Method) capable of handling interactions between waves and moving structures with complex geometry on a standard regular Cartesian grid system is coupled to the VOF(Volume of Fluid) method for tracking the free surface. Present numerical results for the motions of the floating body were compared with existing experimental data as well as numerical results based on FAVOR(Fractional Area Volume Obstacle Representation) algorithm. For detailed examinations of the present model, the additional hydraulic experiments for floating motions and free surface transformations were conducted. Further, the versatility of the proposed numerical model was verified via the numerical and physical experiments for the general rectangular floating bodies. Numerical results were compared with experiments and good agreement was archived.

Modern Vision in the 18~19th Century Garden Arts - The Picturesque Aesthetics and Humphry Repton's Visual Representation - (18~19세기 정원 예술에서 현대적 시각성의 등장과 반영 - 픽처레스크 미학과 험프리 렙턴의 시각 매체를 중심으로 -)

  • Lee, Myeong-Jun;Pae, Jeong-Hann
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.2
    • /
    • pp.30-39
    • /
    • 2015
  • The English Landscape garden and picturesque aesthetics, which was in fashion during the 18th to early 19th century in England, has been accused of making people see the actual garden in terms of a static landscape painting without a synesthetic engagement in nature. As new optic devices such as diorama, panorama, photography, and cinematography were invented, ways of seeing nature transitioned from a perspective vision to a panoramic, that is, modern one. This study intends to uncover signs of this kind of modern vision in the picturesque aesthetics and visual representation of landscape gardener Humphry Repton. German garden theorist Christian Cay Lorenz Hirschfeld contended that the English landscape garden was a new style of designing landscape that followed the principle of the serpentine line, which produced movement in sightlines; thus, he considered garden art as a superior art form among all other genres. The signs of visual motion appear in Repton's sketches of "Red Books". Firstly, he designed systemic routes in his clients' properties by considering different types of movements between walks and drives. Secondly, he often used the visual effects of panoramic views for his sketches in order to allow his clients to experience the human visual field. Lastly, he constructed sequences of sketches in order to provide his clients with an illusion of movement; in other words, Repton's sketches functioned as potential visual media to produce the duration of time in a visual experience. Thus, the garden aesthetics of the time reflected the contemporary visual culture, that is to say, a panoramic vision pertaining to visual motion.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

Effective Utilization of Domain Knowledge for Relational Reinforcement Learning (관계형 강화 학습을 위한 도메인 지식의 효과적인 활용)

  • Kang, MinKyo;Kim, InCheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • Recently, reinforcement learning combined with deep neural network technology has achieved remarkable success in various fields such as board games such as Go and chess, computer games such as Atari and StartCraft, and robot object manipulation tasks. However, such deep reinforcement learning describes states, actions, and policies in vector representation. Therefore, the existing deep reinforcement learning has some limitations in generality and interpretability of the learned policy, and it is difficult to effectively incorporate domain knowledge into policy learning. On the other hand, dNL-RRL, a new relational reinforcement learning framework proposed to solve these problems, uses a kind of vector representation for sensor input data and lower-level motion control as in the existing deep reinforcement learning. However, for states, actions, and learned policies, It uses a relational representation with logic predicates and rules. In this paper, we present dNL-RRL-based policy learning for transportation mobile robots in a manufacturing environment. In particular, this study proposes a effective method to utilize the prior domain knowledge of human experts to improve the efficiency of relational reinforcement learning. Through various experiments, we demonstrate the performance improvement of the relational reinforcement learning by using domain knowledge as proposed in this paper.

Video Event Detection according to Generating of Semantic Unit based on Moving Object (객체 움직임의 의미적 단위 생성을 통한 비디오 이벤트 검출)

  • Shin, Ju-Hyun;Baek, Sun-Kyoung;Kim, Pan-Koo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 2008
  • Nowadays, many investigators are studying various methodologies concerning event expression for semantic retrieval of video data. However, most of the parts are still using annotation based retrieval that is defined into annotation of each data and content based retrieval using low-level features. So, we propose a method of creation of the motion unit and extracting event through the unit for the more semantic retrieval than existing methods. First, we classify motions by event unit. Second, we define semantic unit about classified motion of object. For using these to event extraction, we create rules that are able to match the low-level features, from which we are able to retrieve semantic event as a unit of video shot. For the evaluation of availability, we execute an experiment of extraction of semantic event in video image and get approximately 80% precision rate.

  • PDF

On Two-Dimensional Large-Amplitude Motions in Regular Wave (규칙파중에서의 주상체의 대진폭 운동에 관한 연구)

  • Yong-Jig,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.25-31
    • /
    • 1989
  • Two-dimensional large-amplitude motions in regular harmonic wave are treated in time domain, by satisfying the exact body boundary condition and the linear free surface condition. For the present numerical calculation, the method of free-surface spectral representation with simple source distribution on the instantaneous body surface has been extended to include the effect of the incident wave. Calculations of the wave exciting force are performed for a submerged circular cylinder fixed or oscillating with large amplitude. Especially, nonlinear effects on the time-mean forces are studied in detail. It is shown that relative motion between the body and the fluid particle gives a significant effect on the lift and drift forces. Also, large-amplitude motion of a submerged circular cylinder and that of a floating Lewis-form cylinder are directly simulated in time domain. In the calculation results, some nonlinear effects are shown.

  • PDF

The Simulator Design for the Analysis of Aircraft Longitudinal Dynamic Characteristics (항공기 세로 동특성 해석을 위한 시뮬레이터 설계)

  • Yoon, Sun-Ju
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.4
    • /
    • pp.427-436
    • /
    • 2006
  • State-space method for the analysis of the dynamic characteristics of a body motion is set up as mathematical tool for the solution of differential equation by computer. Representation of a system is described as a simple form of matrix calculation and unique form of model is available for the linear or nonlinear, time variant or time invariant, mono variable or multi variable system etc. For the analysis of state-space method a complicated vector calculation is required, but this analysis can be simplified with the specific functions of a software package. Recently as the Graphical User Interface softwares are well-developed, then it is very simplified to execute the simulation of the dynamic characteristics for the state-space model with the interactive graphics treatment. The purpose of this study is to developed the simulator for the educational analysis of the dynamic characteristics of body motion, and for the analysis of the longitudinal dynamic characteristics of an aircraft that is primarily to design the simulator for the analysis of the transient response of an aircraft longitudinal stability.

  • PDF