• 제목/요약/키워드: Motion reduction structure

검색결과 138건 처리시간 0.021초

비탄성 설계 스펙트럼에 의한 이력 모델의 효과 (Effect of Hysteretic Models on the Inelastic Design Spectra)

  • 한상환;오영훈;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.214-224
    • /
    • 1999
  • The design response spectrum has been widely used in seismic design to estimate force and deformation demands of structures imposed by Earthquake Ground Motion (EQGM). Inelastic Design Response Spectra (IDRS) to specify design yielding strength in seismic codes are obtained by reducing the ordinates of Linear Elastic Design Response Spectrum (LEDRS) by strength reduction factor (R). Since a building is designed using reduced design spectrum (IDRS) rather than LEDRS in current seismic design procedures it allows structures behave inelastically during design level EQGM. Inelastic Response Spectra (IRS) depend not only on the characteristics of the expected ground motion at a given site, but also on the dynamic properties and nonlinear characteristics of a structure. However, it has not been explicitly investigated the effect of different hysteretic models on IRS. In this study, the effect of hysteretic models on IRS is investigated.

  • PDF

플랩 블레이드를 이용한 조류 터빈의 부하 저감에 대한 연구 (Study on Load Reduction of a Tidal Steam Turbine Using a Flapped Blade)

  • 정다솜;고진환
    • Ocean and Polar Research
    • /
    • 제42권4호
    • /
    • pp.293-301
    • /
    • 2020
  • Blades of tidal stream turbines have to sustain many different loads during operation in the underwater environment, so securing their structural safety is a key issue. In this study, we focused on periodic loads due to wave orbital motion and propose a load reduction method with a blade design. The flap of an airplane wing is a well-known structure designed to increase lift, and it can also change the load distribution on the wing through deflection. For this reason, we adopted a passive flap structure for the load reduction and investigated its effectiveness by an analytical method based on the blade element moment theory. Flap torsional stiffness required for the design of the passive flap can be obtained by calculating the flap moment based on the analytic method. Comparison between a flapped and a fixed blade showed the effect of the flap on load reduction in a high amplitude wave condition.

The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid

  • Ghaitani, M.M.;Majidian, A.;Shokri, V.
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.103-113
    • /
    • 2020
  • This paper deal with the critical fluid velocity response of nanocomposite pipe conveying fluid based on numerical method. The pressure of fluid is obtained based on perturbation method. The motion equations are derived based on classical shell theory, energy method and Hamilton's principle. The shell is reinforced by nanoparticles and the distribution of them are functionally graded (FG). The mixture rule is applied for obtaining the equivalent material properties of the structure. Differential quadrature method (DQM) is utilized for solution of the motion equations in order to obtain the critical fluid velocity. The effects of different parameters such asCNT nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios and internal fluid are presented on the critical fluid velocity response structure. The results show that with increasing the CNT nanoparticles, the critical fluid velocity is increased. In addition, FGX distribution of nanoparticles is the best choice for reinforcement.

구조 재배치를 이용한 탄성체 진동 저감 (Reduction of Vibration for an Elastic Structure by means of a Relocation of Part)

  • 김기만;최성대
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.98-105
    • /
    • 2020
  • This study deals with the passive control of the dynamic characteristics of a theoretical model which is a string with fixed ends and loaded by two point masses - a main mass (Mo) and a secondary mass (Ms). It has been controlled passively by means of a relocation of a secondary mass. A main mass placed on the string is considered as a vibrating receiver which be forced to vibrate by a vibrating source being positioned on the string. By analyzing the motion of a string, the equation of motion for a string was derived by using a method of variation of parameters. To define the optimal conditions for the vibration reduction, the governing equation, which denotes the dynamic response of a string was derived in the closed form and then evaluated numerically. The possibility of reduction of an amplitude and a power being transmitted to a main mass were found to depend on the location and the magnitude of a secondary mass as well as the range of a forcing frequency.

지진특성에 따른 MR 감쇠기가 설치된 단자유도 구조물의 등가감쇠비 (Equivalent damping ratio based on earthquake characteristics of a SDOF structure with an MR damper)

  • 문병욱;박지훈;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.459-464
    • /
    • 2007
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

MR 감쇠기가 설치된 단자유도 구조물의 지진응답에 기초한 등가감쇠비 (Equivalent damping ratio based on the earthquake response of a SDOF structure with a MR damper)

  • 박지훈;문병욱;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.879-885
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

지진특성에 따른 MR감쇠기가 설치된 단자유도 구조물의 등가감쇠비 (Equivalent Damping Ratio Based on Earthquake Characteristics of a SDOF Structure with an MR Damper)

  • 문병욱;박지훈;이성경;민경원
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.87-93
    • /
    • 2008
  • Seismic control performance of MR dampers, which have severe nonlinearity, varies with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally. response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load

  • Mohammadian, Hossein;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제13권6호
    • /
    • pp.589-598
    • /
    • 2017
  • In this paper, dynamic response of the horizontal concrete beam subjected to seismic ground excitation is investigated. The structure is reinforced by $Fe_2O_3$ nanoparticles which have the magnetic properties. The hyperbolic shear deformation beam theory (HSDBT) is used for mathematical modeling of the structure. Based on the Mori-Tanaka model, the effective material properties of concrete beam is calculated considering the agglomeration of $Fe_2O_3$ nanoparticles. Applying energy method and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized for numerical solution of the motion equations. The effects of different parameters such as volume fraction and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field, boundary conditions and geometrical parameters of concrete beam are studied on the dynamic response of the structure. In order to validation of this work, an exact solution is used for comparing the numerical and analytical results. The results indicated that applying magnetic field decreases the of the structure up to 54 percent. In addition, increase too much the magnetic field (Hx>5e8 A/m) does not considerable effect on the reduction of the maximum dynamic displacement.

원통형 부유체의 heave운동 저감을 위한 부가물 형상에 관한 수치적 연구 (A Numerical Study on the Appendage Shape for a Heave Motion Reduction of Floating Cylindrical Structure)

  • 임근남;김상현;김동영
    • 해양환경안전학회지
    • /
    • 제21권4호
    • /
    • pp.449-456
    • /
    • 2015
  • 본 연구에서는 다양한 감쇠판을 원통형 부유체에 부착하고 수치 시뮬레이션을 통해 원통형 부유체의 heave RAO 및 고유주기의 변화를 고찰하였다. 먼저 감쇠판을 부착하지 않은 원통형 부유체의 heave RAO 및 고유주기를 파악하였고, 원통형 부유체에 부착한 감쇠판의 크기와 형상을 바꿔가며 각 경우에 대한 heave RAO 및 고유주기를 평가하였다. 수치 시뮬레이션 결과, 감쇠판의 모든 면적에 대해서 감쇠판을 부착한 원통형 부유체의 고유주기는 증가하였고, 감쇠판의 크기가 1.30D부터 입사파의 피크주기에서 heave RAO는 감소하였다. 감쇠판의 모든 면적에 대해서 원형 감쇠판이 Y자형 감쇠판보다 고유주기가 길게 나타나며, 고유주기의 차이는 감쇠판의 면적이 커질수록 그 차이가 커졌다. 운동응답 스펙트럼 계산 결과, 원형 감쇠판과 Y자형 감쇠판을 부착한 원통형 부유체의 heave 운동이 입사파의 피크주기에서 현저하게 감소하였다. 또한 원형 감쇠판을 부착한 원통형 부유체의 고유주기가 Y형 감쇠판을 부착한 경우보다 입사파의 피크 주기에서 더 멀리 이동하였다.

Post-earthquake capacity evaluation of R/C buildings based on pseudo-dynamic tests

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.91-105
    • /
    • 2006
  • In this paper, post-earthquake capacity evaluation method of reinforced concrete buildings was studied. Substructure pseudo-dynamic test and static loading test of first story column in a four-story R/C building was carried out in order to investigate the validity of the evaluation method proposed in the Damage Assessment Guideline (JBDPA 2001). In pseudo-dynamic test, different levels of damage were induced in the specimens by pre-loading, and input levels of seismic motion, at which the specimens reached to the ultimate stage, were examined. From the experimental result, no significant difference in damage levels such as residual crack width between the specimens under static and pseudo-dynamic loading was found. It is shown that the seismic capacity reduction factors ${\eta}$ can provide a reasonable estimation of post-earthquake seismic capacity of R/C buildings suffered earthquakes.