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1. Introduction

In the industrial fields, vibration phenomena of 

machines and structures had been serious problems 

to be solved for the good environmental conditions. 

Until nowadays a lot of studies have been 

performed to analyze and control the vibration 

phenomena induced by machining operations in the 

past decades. These days the fast manufacturing 

time and the accurate level of the machining tools 

are known to be the important factors for the 

development of the industry. In case of the needs 

of the high speed operation, the vibration 

phenomenon should be one of the overcoming 

troubles for the stability of the machine structure.

For the simplification of the complex structures, 

each part of the machines is considered as a 

discrete system (a rigid body or a particle) or a 

continuous system such as string, beam, plate or 

shell and then in a theoretical model. Hence, the 

vibration characteristics of a  system in a theoretical 
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model had been studied by lots of persons. Recently 

for the investigation of the vibration characteristics, 

the vibration energy flow and the dynamic response 

of a rigid body or some compound system have 

been analyzed. By using a model of an elastic 

structure, the vibration energy and control 

technologies had been presented[1-5]. The structure 

analysis and the control of the vibrations of the 

machine tools had been introduced [6-9].

In this study a vibrating system in a theoretical 

model which consists of two point masses loaded 

string with a primary source is employed to analyze 

and improve the dynamic response of the original 

system which is a one point mass loaded string by 

relocating a secondary point mass. The edges 

conditions of a string are fixed. Based on the wave 

equation, the vibration of a string will be discussed. 

To define the dynamic response of a vibrating 

system, the closed form of a displacement of a 

vibrating system is derived by using a method of 

variation of parameters. For the reduction of the 

dynamic response of the main mass, the location 

and magnitude of a secondary mass is evaluated 

numerically until the optimal conditions be found. 

Fig. 1 shows the theoretical model of a uniformly 

stretched string which is loaded by two point 

masses and is subjected to a harmonically excited 

force F(t).

Fig. 1 A theoretical model of a vibrating system 

F(t)-[Fo(amplitude), ω(forcing frequency)], 

Distances away from the left end-[Xo(to the 

main mass), Xs(to the secondary mass), 

Xf(to the external force)], Mass items-[Mo(a 

main mass), Ms(a secondary mass)]

Here the total mass of the system is kept 

constant but the magnitude and the location of a 

secondary point mass are considered as variables.

2. The Governing Equations

The governing equation for the motion of a string 

which is loaded by two point masses, can be written 

as,  

         (1)

where XX 
X 



 tt 
t



, 

fXt Foe
itXXf , 

MXt  MoXXoMsXXsttuXt

and u(X,t) represents the displacements of the string, 

T stands for the uniform tension of the string, ρ for 

the mass density of the string per unit length and δ 

is the Dirac delta function.

Assuming that the motion of the string is 

sinusodial in time, the displacement u(X,t) becomes

                  (2)

where y(X) represents the amplitude of the string 

and depends only on X. By inserting Eq.(2) into 

Eq.(1) and cancelling the term eiωt from both sides 

of equation, the governing equation of motion is 

written as a function of X,

             (3)

where k T



,  FX T

Fo
XXf  and

mX T

Mo


XXo yXoT

Ms


XXs yXs 

Equation (3) satisfies the following boundary 

conditions,
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y  yL           (4)

The complete solution of Eq. (3) can be 

expressed into the sum of a homogeneous solution 

(yh) and a particular solution (yp) as 

            (5)

The homogeneous solution is determined by 

letting the right side of Eq.(3) be zero. Then the 

solution becomes as

  sinkX BcoskX         (6)

where A and B are the constant parameters. The 

particular solution is assumed to be of the form as

  sinkX  VXcoskX      (7)

Here V1(X) and V2(X) can be determined by 

means of the method of variation of parameters and 

then defined as follows

  

 
X

cos          (8)

  

 


sin              (9)

where f   F m .

By substituting Eqs. (8) and (9) in Eq. (7), the 

particular solution becomes as


  







  (10)

where 
 


sin


,


 




sin


 and

m

X kT

Ms


sinkXXs HXXs .

Here H(X-XI) in Eq. (10) represents the 

Heaviside unit step function. Hence By evaluating 

the quantities, y(Xo) and y(Xs) in Eq. (10) and then 

the boundary conditions, Eq. (4), the complete 

solution of Eq. (3) becomes as

  


sin 

 

  (11)

where 
 sin




sin
,

      
 sin




sin
,

      
 sin










sin






,

      
 sin










sin






,

and 
 

 sin






,

    
 sin




 .

Equation (11) which is the displacement of a string 

is used to define the characteristics of a vibrating 

system. All values obtained in this study have been 

expressed into the dimensionless forms which are 

divided by a certain quantity. The total mass of the 

system is expressed into M (= Mo + Ms + ρL) and 

kept constant. Also the magnitude and location of the 

main mass are kept constant. In Table 1, the 

dimensionless properties are introduced as

Table 1 Dimensionless properties 

Items Expression form

masses

mo = Mo/M = 0.3
ms = Ms/M = 0.1, 0.2
  

 


displacement Y(x) = y(X)/Fo/kT

locations
xo=Xo/L = 0.3
xf=Xf/L = 0.7
xs=Xs/L = 0 ~ 1

power P = Power/

frequency  = 

- 100 -



Kyung-Shin Choi, Ji-Han Lee, Ji-Ung Hong, Won-Jee Chung : 한국기계가공학회지 제19권, 제7호

�������������������������������������������������������������������������������������������������������������

3. Resonant Frequency Coefficients (α)

In Eq. (11), the denominator part A2 vanishes for 

certain specific values of the wave number k. The 

roots of denominator which are expressed in ωr by 

k2=ρω2/T are called the resonant frequencies for the 

vibrating system. So the resonant frequency equation 

becomes as,

  sin       (12)

Here Eq. (12) can be rewritten in terms of the 

dimensionless form as,

  sin 
     (13)

where   m
 mosinxo  ,

   m
 mssinxs  ,

   
 sin




sin
,

   
 sin




sin
,

  


 sin





 ,

  


 sin





 .

For two mass ratios (ms = 0.1, 0.2), the 

variations of three resonant frequency coefficients (α

1, α2, α3) versus location of a secondary mass are 

plotted in Fig. 2 (a), (b) and (c), respectively. The 

emergence of secondary mass changes the resonant 

frequency of the system, but may also have the 

same resonant frequency as the original system 

being loaded by one point mass depending on the 

location of the secondary mass. Also it is observed 

that the larger the mass is, the greater be the 

variation in frequency.

4. Dynamic Characteristics

4.1 Reduction of Amplitudes

(a) a1

(b) a2

(c) a3

Fig. 2 Resonant frequency coefficients vs xs 

      mo = 0.3, xo = 0.3, xf = 0.7 

      solid [ms = 0.1], dot [ms = 0.2]

In order to control passively the amplitude of a 

main mass, the dimensionless amplitude Y(x) in Eq. 

(11) is evaluated according to the secondary mass 

- 101 -



Giman Kim, Seongdae Choi : 한국기계가공학회지 제19권, 제7호

�������������������������������������������������������������������������������������������������������������

(Ms) location, magnitude and the range of frequency. 

The loss factor is applied to avoid infinite 

amplification in resonance in all calculation processes. 

So the frequency coefficient is expressed in terms of 

a complex form as,

  

         (14)

where η is the loss factor and typically given in 

the range of 10-1 to 10-3. The reduction level of the 

amplitude (RA) is evaluated in comparison with two 

cases - an amplitude without the secondary mass and 

an amplitude with the secondary mass. The ratio of a 

Y(x) with Ms to one without Ms is expressed in 

terms of percentage[%] as follows;

              (15)

The values below 100 in Eq. (15) verifies the 

reduction of amplitude. In Fig. 3 (a), (b) and (c), the 

reduction of amplitudes at the main mass (xo) for two 

mass ratios (ms = 0.1, 0.2), are plotted along location 

of a secondary mass for three frequency coefficients 

(α = 3, 6, 10), respectively. In Fig. 3 (a) for α = 3, 

the reduction of amplitude are observed to be done 

around the locations (xs = 0.2~0.6). However in case 

of α = 6 and 10, the locations for the reduction are 

observed differently compared to the case of α = 3. 

Hence it is not easy to achieve reduction for wide 

frequency range by fixing the location of the 

secondary mass because the variation of reduction 

amplitude is so irregular depending on frequency. 

Especially, the secondary mass located near or at 

the main mass was found to satisfy the reduction in 

frequency zones in three cases (α = 3, 6, 10). In Fig. 

4, the reduction of amplitudes for three frequency 

coefficients ratios (α = 3, 6, 10), are plotted along x 

for the secondary mass location (xs = 0.29) which is 

very close to the main mass. As shown in Fig. 4, it 

is proved again that when the secondary mass is

(a) α = 3

(b) α = 6

(c) α = 10

Fig. 3 RA[xo] vs xs

      mo = 0.3, xo = 0.3, xf = 0.7

      solid [ms = 0.1], dot [ms = 0.2]

located near or at the main mass, the amplitude of 

the main mass could be down to the level being less 

than the original system.

In Fig.5 (a), (b), (c) and (d), the reduction of 

amplitudes at the main mass for two mass ratios (ms

= 0.1, 0.2), are plotted along frequency coefficient for 

four locations of the secondary mass (xs = 0.2, 0.3, 

0.6, 0.7), respectively.

- 102 -



Kyung-Shin Choi, Ji-Han Lee, Ji-Ung Hong, Won-Jee Chung : 한국기계가공학회지 제19권, 제7호

�������������������������������������������������������������������������������������������������������������

Fig. 4 RA[x] vs x

      mo=0.3, xo=0.3, ms=0.2, xs=0.29, xf=0.7

      solid [α = 3], dot [α = 6], dash [α = 10]

In Fig. 5 (a) and (b), it is confirmed that the 

reduction of an amplitude of the main mass agrees 

well with the results in Fig. 3 for α = 3 ~ 6 and 

the secondary mass being located near or at the 

location of the main mass. But as shown in Fig. 5 ( 

c) and (d) which are the cases of the secondary mass 

being located away from the main mass, the 

amplitude of the main mass is found to be amplified 

for α = 3 ~ 6. It is surely stated that the reduction 

of an amplitude of the main mass is strongly 

depending on the location of the secondary mass and 

the range of the frequency. 

4.2 Reduction of Transmitted Power 

The Vibrational energy which is induced by the 

harmonic motion of the external force is known to 

transmit to the main and the neighbour systems. In 

practice, many structures and parts are known to be 

troubled by excessive energy which is transmitted to 

the main part and to the surrounding parts. Hence 

the power transmitted to the main mass which is 

the energy rated by time is evaluated and is 

expressed in dimensionless form as,

   


 ∗        (16)

where ‘*’ means the conjugate complex form of

(a) xs = 0.2

(b) xs = 0.3

(c) xs = 0.6

(d) xs = 0.6

Fig. 5 RA[xo] vs a

      mo = 0.3, xo = 0.3, xf = 0.7

      solid [ms = 0.1], dot [ms = 0.2]
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(a) α = 3

  

(b) α = 6

  

(c) α = 10

Fig. 6 PRR vs xs

      mo = 0.3, xo = 0.3, xf = 0.7

      solid [ms = 0.1], dot [ms = 0.2]

Y. The power reduction ratio (PRR) which is the 

ratio of a power with Ms to one without Ms is 

expressed in terms of decibel [dB] as;

  






 
 

 




          (17)

In Fig.6 (a), (b) and (c), the reductions of the 

transmitted power to the main mass for two mass 

ratios (ms = 0.1, 0.2) versus the location of the 

secondary mass are plotted for three frequency 

coefficient (α = 3, 6, 10), respectively. 

As shown in Fig. 6, the reduction pattern of the 

power along the location of the secondary mass is 

found to be irregular with respect to the frequency 

coefficient. However, the reduction of power is 

observed to be down well when the secondary mass 

is placed at or near the main mass location.

5. Conclusion

In this paper, the dynamic characteristics of a 

vibrating string with two point masses is studied to 

determine the optimal design parameters of a 

secondary mass. On the bases of the analyses in this 

study, the conclusions are obtained as follows,

1. A secondary mass is observed to become the 

control tool for the reduction of the dynamic 

characteristics, which are the dynamic responses 

and the power be transmitted to a main mass 

placed on the string. 

2. The location of a secondary mass should be 

positioned near or at the place of a main mass 

for the reduction of dynamic response of a 

system.

3. The variation of a secondary mass configuration 

might be a helpful tool to avoid the resonant 

phenomena by changing the range of the natural 

frequencies.
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