• 제목/요약/키워드: Motion generation algorithm

검색결과 143건 처리시간 0.024초

지능 알고리즘 기반의 이족 보행로봇의 보행 구현 (A Gait Implementation of a Biped Robot Based on Intelligent Algorithm)

  • 강찬수;김진걸;노경곤
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1210-1216
    • /
    • 2004
  • This paper deals with a human-like gait generation of a biped robot with a balancing weight of an inverted pendulum type by using genetic algorithm. The ZMP (Zero Moment Point) is the most important index in a biped robot's dynamic walking stability. To perform a stable walking of a biped robot, a balancing motion is required according to legs' trajectories and a desired ZMP trajectory. A dynamic equation of the balancing motion is nonlinear due to an inverted pendulum type's balancing weight. To solve the nonlinear equation by the FDM (Finite Difference Method), a linearized model of equation is proposed. And GA (Genetic Algorithm) is applied to optimize a human-like balancing motion of a biped robot. By genetic algorithm, the index of the balancing motion is efficiently optimized, and a dynamic walking stability is verified by the ZMP verification equation. These balancing motion are simulated and experimented with a real biped robot IWR-IV. This human-like gait generation will be applied to a humanoid robot, at future work.

진화 알고리즘을 사용한 인간형 로봇의 동작 모방 학습 및 실시간 동작 생성 (Motion Imitation Learning and Real-time Movement Generation of Humanoid Using Evolutionary Algorithm)

  • 박가람;나성권;김창환;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1038-1046
    • /
    • 2008
  • This paper presents a framework to generate human-like movements of a humanoid in real time using the movement primitive database of a human. The framework consists of two processes: 1) the offline motion imitation learning based on an Evolutionary Algorithm and 2) the online motion generation of a humanoid using the database updated bγ the motion imitation teaming. For the offline process, the initial database contains the kinetic characteristics of a human, since it is full of human's captured motions. The database then develops through the proposed framework of motion teaming based on an Evolutionary Algorithm, having the kinetic characteristics of a humanoid in aspect of minimal torque or joint jerk. The humanoid generates human-like movements far a given purpose in real time by linearly interpolating the primitive motions in the developed database. The movement of catching a ball was examined in simulation.

운전 시뮬레이터의 주행감각 재현을 위한 새로운 가속도 모의 수법 알고리즘 개발 (A New Washout Algorithm for Reappearance of Driving Perception of Simulator)

  • 유기성;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.519-528
    • /
    • 2004
  • For reappearance of driving perception in a driving simulator, a washout algorithm is required. This algorithm can reappear the vehicle driving motions within workspace of the driving simulator. However classical washout algorithm contains several problems such as selection of order, cut-off frequency of filters, generation of wrong motion cues by characteristics of filters, etc. In order to overcome these problems, this paper proposes a new washout algorithm which gives more accurate sensations to drivers. The algorithm consists of an artificial inclination of the motion plate and human perception model with band pass filter and dead zone. As a result of this study, the motion of a real car could be reappeared satisfactorily in the driving simulator and the workspace of motion plate is restrained without scaling factor.

요소결합을 통한 파워트레인 시뮬레이션 소프트웨어 (I): 동력흐름 자동생성 모듈 개발 (Powerflow Simulation Software of the Automotive Powertrain through the Combination of the Components (I): Development of the Automatic Powerflow Generation Module)

  • 이승종;서정민
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.43-51
    • /
    • 2004
  • In this paper, the element combination algorithm for designing an arbitrary type of the automatic transmissions is proposed. The powertrain simulation software using this algorithm is then developed. The deliveries of the angular velocities and torques are only considered for the motion characteristics of the automatic transmissions. The effects of the vibration and noise are not considered. The automatic transmission is defined by the basic elements, i.e., planetary gear set, clutch, brake, shaft, general gear, and inertia. The transmission system is defined by the combination of these elements. The element combination matrices automatically generate the equations of motion for each shift. The self error-correcting algorithm is also developed to verify the element combination algorithm. This automotive powertrain simulation/design software with user-friendly graphic user interface has two main modules. The first module, the automatic powerflow generation module, mainly consists of the automatic powerflow and component generation algorithms. This paper covers the theory and application for the first module. The second module deals with the automatic system generation algorithm and will be discussed in the second paper.

Modifiable Walking Pattern Generation Handling Infeasible Navigational Commands for Humanoid Robots

  • Lee, Bum-Joo;Kim, Kab Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.344-351
    • /
    • 2014
  • In order to accomplish complex navigational commands, humanoid robot should be able to modify its walking period, step length and direction independently. In this paper, a novel walking pattern generation algorithm is proposed to satisfy these requirements. Modification of the walking pattern can be considered as a transition between two periodic walking patterns, which follows each navigational command. By assuming the robot as a linear inverted pendulum, the equations of motion between ZMP(Zero Moment Point) and CM(Center of Mass) state is easily derived and analyzed. After navigational command is translated into the desired CM state, corresponding CM motion is generated to achieve the desired state by using simple ZMP functions. Moreover, when the command is not feasible, feasible command is alternated by using binary search algorithm. Subsequently, corresponding CM motion is generated. The effectiveness of the proposed algorithm is verified by computer simulation.

Motion Field Estimation Using U-Disparity Map in Vehicle Environment

  • Seo, Seung-Woo;Lee, Gyu-Cheol;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.428-435
    • /
    • 2017
  • In this paper, we propose a novel motion field estimation algorithm for which a U-disparity map and forward-and-backward error removal are applied in a vehicular environment. Generally, a motion exists in an image obtained by a camera attached to a vehicle by vehicle movement; however, the obtained motion vector is inaccurate because of the surrounding environmental factors such as the illumination changes and vehicles shaking. It is, therefore, difficult to extract an accurate motion vector, especially on the road surface, due to the similarity of the adjacent-pixel values; therefore, the proposed algorithm first removes the road surface region in the obtained image by using a U-disparity map, and uses then the optical flow that represents the motion vector of the object in the remaining part of the image. The algorithm also uses a forward-backward error-removal technique to improve the motion-vector accuracy and a vehicle's movement is predicted through the application of the RANSAC (RANdom SAmple Consensus) to the previously obtained motion vectors, resulting in the generation of a motion field. Through experiment results, we show that the performance of the proposed algorithm is superior to that of an existing algorithm.

객체의 움직임 해석을 이용한 회화적 스트로크 생성 방법 (Painterly Stroke Generation using Object Motion Analysis)

  • 이호창;서상현;류승택;윤경현
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제37권4호
    • /
    • pp.239-245
    • /
    • 2010
  • 기존의 회화적 렌더링은 영상 기울기(image gradient) 정보를 사용해 스트로크의 방향, 크기, 길이 등을 결정하였다. 영상 기울기는 객체의 모양을 표현하는데 있어서 유용한 정보이지만 풍경화에서 표현되는 객체(물, 나무 등)의 현재 움직임이나 흐름을 나타낼 수 없는 한계를 가진다. 실제 화가들의 그림에서, 객체의 실제 움직임에 기반한 브러시 스트로크는 관찰자에게 객체의 움직임을 보다 쉽게 인지할 수 있게 하며, 그림이 그려질 당시의 느낌을 보다 생동감 있게 전달할 수 있는 장점을 가진다. 본 논문에서는 풍경화의 주 대상이 되는 객체들의 움직임 정보를 기반으로 동적인 객체의 움직임을 효과적으로 표현할 수 있는 회화적 스트로크 생성에 관한 연구를 제안한다. 이를 위해 동일한 시점을 가진 순차영상 집합으로부터 표현하고자 하는 장면의 움직임 정보(크기, 방향, 편차)을 추출한다. 그리고 움직임의 크기가 큰 영역은 움직임의 방향에 기반하여 스트로크를 생성하며 움직임의 정보가 작은 영역은 영상 기울기 값을 기반으로 방향을 결정한다. 우리의 알고리즘은 사실적인 움직임의 방향을 표현하는데 유용하며 이는 풍경화영상을 렌더링 하는데 유용하다.

Real-Time Generation of Humanoid Motion with the Motion-Embedded COG Jacobian

  • Kim, Do-Ik;Choi, Young-Jin;Oh, Yong-Hwan;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2148-2153
    • /
    • 2005
  • For a legged robot such as a humanoid, balancing its body during a given motion is natural but the most important problem. Recently, a motion given to a humanoid is more and more complicated, and thus the balancing problem becomes much more critical. This paper suggests a real-time motion generation algorithm that guarantees a humanoid to be balanced during the motion. A desired motion of each arm and/or leg is planned by the conventional motion planning method without considering the balancing problem. In order to balance a humanoid, all the given motions are embedded into the COG Jacobian. The COG Jacobian is modified to include the desired motions and, in consequence, dimension of the COG Jacobian is drastically reduced. With the motion-embedded COG Jacobian, balancing and performing a task is completed simultaneously, without changing any other parameters related to the control or planning. Validity and efficiency of the proposed motion-embedded COG Jacobian is simulated in the paper.

  • PDF

분산 비디오 부호화에서 보조정보 생성을 위한 블록중심 대칭형의 움직임 탐색 기법 (Block-Centered Symmetric Motion Estimation for Side Information Generation in Distributed Video Coding)

  • 이찬희;김진수
    • 한국콘텐츠학회논문지
    • /
    • 제10권6호
    • /
    • pp.35-42
    • /
    • 2010
  • 보조정보 생성기법은 분산 비디오 부호화 기법(DVC: Distributed Video Coding)에서 핵심적인 역할을 수행한다. 대부분의 기존 보조정보 생성 기법은 복원된 키 프레임을 참조영상으로 블록중심으로 대칭형 움직임 탐색 기법을 주로 사용하고 있다. 그러나 이와 같은 방식은 움직임 탐색에 얻어지는 움직임 벡터가 복원하고자 하는 블록의 위치와 일치하지 않는 경향이 있으며 보조정보의 성능을 개선하는데 제한적이다. 이와 같은 문제점을 극복하기 위해, 본 논문에서는 움직임 벡터가 복원하고자 하는 블록의 중심 위치에서 대칭이도록 하는 블록중심 대칭형의 움직임 탐색 기법을 제안하고, 이와 같은 움직임 탐색법에 기초한 보조정보 생성 기법을 제안한다. 제안한 방식은 기존의 단순 대칭형 움직임 탐색방식에 비해 우수한 객관적 화질을 얻을 수 있음을 모의실험을 통해 보인다.