• Title/Summary/Keyword: Motion environment

Search Result 1,320, Processing Time 0.027 seconds

Adaptive Keyframe and ROI selection for Real-time Video Stabilization (실시간 영상 안정화를 위한 키프레임과 관심영역 선정)

  • Bae, Ju-Han;Hwang, Young-Bae;Choi, Byung-Ho;Chon, Je-Youl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.288-291
    • /
    • 2011
  • Video stabilization is an important image enhancement widely used in surveillance system in order to improve recognition performance. Most previous methods calculate inter-frame homography to estimate global motion. These methods are relatively slow and suffer from significant depth variations or multiple moving object. In this paper, we propose a fast and practical approach for video stabilization that selects the most reliable key frame as a reference frame to a current frame. We use optical flow to estimate global motion within an adaptively selected region of interest in static camera environment. Optimal global motion is found by probabilistic voting in the space of optical flow. Experiments show that our method can perform real-time video stabilization validated by stabilized images and remarkable reduction of mean color difference between stabilized frames.

  • PDF

A GIS-Based Regional Risk Analysis Approach for Bridges (GSIS를 이용한 교량의 안전관리시스템 구축)

  • Kim, Seong-Hun
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 1994.11a
    • /
    • pp.32-42
    • /
    • 1994
  • A GIS-based regional risk analysis program to interactively study the vulnerability of bridges in a regional highway network is described. The analysis utilizes three major components. The use of a GIS system as the integrating environment to display geographic data, to handle inquiries and to display the results of a query. A risk model for bridges which can predict the level of damage due to a particular intensity of ground motion at a bridge site. A ground motion attenuation model to predict the intensity of ground motion at a particular bridge. The interactive components are supported by data files which encode characteristics such as potential earthquake sources and magnitudes, and characteristics of the bridges which are important for damage and failure analysis.

  • PDF

A Theoretical Study on the Charactersitics of Motion Response of Stern Trawlers (선미식 트롤선의 동요특성에 관한 이론적인 연구)

  • 강일권;윤점동;조효제
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.2
    • /
    • pp.89-98
    • /
    • 1998
  • In the field of research of seakeeping quality, much development has been made incent years using the method of calculation based on the strip theory. It is indispensable to grasp quantitatively the seaworthiness of a ship in order to draw correct design at initial stage and to perform proper operations at sea services. In this paper, the responses of three fishing vessels are calculated using statistical and spectral analyzing method to get the characteristics of the motion response. From the theoretical result we know that the significant values of the pitching and rolling motion can be signiicantly affected by not only the ship's tonnage but also the mean wave period in spite of the similar sea environment. So we can apply these expected results to the safe maneuvering and fishing operations in rough weather conditions by combining environmental circumstance with the stability condition of vessels.

  • PDF

Development of Vision based Autonomous Obstacle Avoidance System for a Humanoid Robot (휴머노이드 로봇을 위한 비전기반 장애물 회피 시스템 개발)

  • Kang, Tae-Koo;Kim, Dong-Won;Park, Gwi-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.161-166
    • /
    • 2011
  • This paper addresses the vision based autonomous walking control system. To handle the obstacles which exist beyond the field of view(FOV), we used the 3d panoramic depth image. Moreover, to decide the avoidance direction and walking motion of a humanoid robot for the obstacle avoidance by itself, we proposed the vision based path planning using 3d panoramic depth image. In the vision based path planning, the path and walking motion are decided under environment condition such as the size of obstacle and available avoidance space. The vision based path planning is applied to a humanoid robot, URIA. The results from these evaluations show that the proposed method can be effectively applied to decide the avoidance direction and the walking motion of a practical humanoid robot.

Sensorless Vibratory Orienting of Small Polygonal Parts (소형 다각형 부품의 비센서 진동 정렬)

  • Han, In-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1111-1118
    • /
    • 2006
  • This paper covers topics related to the investigations for the problem of sensorless vibratory orienting of polygonal parts with high probability through dynamic simulation. The author's program for mechanical systems with changing topologies was experimentally validated and was used as a simulation and design tool for motion behaviors of the vibratory parts-orienting system in the dynamic environment. A flat level vibrating bar is proposed as a means of orienting parts. Dynamic manipulation, in which a part is repeatedly caught and tossed by the bar without sensing, forms the fundamental manipulation strategy. This paper presents how to plan vibratory manipulation strategies that can orient a small rigid polygonal part using interaction between the part and the vibrating bar without requiring sensing. The planned motion strategies have been experimentally validated to show how the dynamic simulation can be used to find favorable vibration parameters for a given part without knowledge of their initial orientations.

The Mobile Terminal System Implementation of Medical Imaging based on Motion-JPEG

  • Kim, Jae-Joon;Jung, Dae-Wha
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1701-1709
    • /
    • 2009
  • The mobile terminal system plays a key role in medical industries which require in fast and accurate diagnosis from heterogeneous acquisition equipment. The demand for PACS (picture archiving and communication systems) has continued to increase in major hospitals and private clinics. Patient care depends on how fast the medical imaging system provides images and how accurately the images are interpreted by physicians. In this paper, we propose an efficient method to decipher the hundreds of images required by physicians to accurately diagnose patients. By exploring Motion- JPEG (M-JPEG), this paper has demonstrates the possibilities for efficient management of medical images with a newly designed image file format and improvement in imaging diagnoses through the replaying of moving pictures of a patient in a mobile environment.

  • PDF

Mounting Detection in a Livestock Surveillance Environment with Motion History Image (가축 감시 카메라 환경에서 Motion History Image 기법을 이용한 승가 상황 검출)

  • Choi, Dongwhee;Kim, Heegon;Chung, Youngwha;Park, Daihee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.901-903
    • /
    • 2014
  • 논문에서는 비디오 감시 시스템을 기반으로 축사 내 환경 및 상황을 모니터링하고 최적의 번식 적기를 판별하기 위한 시스템을 제안한다. 본 논문에서 제안된 시스템은 영상 데이터로부터 각 프레임의 Motion History Image 처리를 이용하여 움직임 벡터를 추출하고 이를 유효한 움직임 벡터로 분류한다. 움직임 벡터의 크기와 방향이 임계값보다 큰 경우 해당 장면을 특정 상황으로 분류한다. 실제 촬영한 영상 데이터를 통해 실험한 결과, 승가 상황에서 확연한 결과값의 차이가 있었고, 이를 이용하여 한우의 승가 상황 검출이 가능함을 확인하였다.

Experimental study of embedding motion and holding power of drag embedment type anchor on hard and soft seafloor

  • Shin, Hyun-Kyoung;Seo, Byoung-Cheon;Lee, Jea-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.193-200
    • /
    • 2011
  • As larger ships and floating offshore structures are, and rougher the marine environment becomes nowadays, a drag embedment type anchor of more stable performance and higher holding power is requested. This paper describes an experimental study of the drag embedding motion and the resultant holding force of three types of drag embedment type anchor model (HALL, AC-14, SEC POOL-N, scale 1/10).

PC based Immersive Virtual Environment(PIVE) System by Recognizing Human Motion (인체 동작 인식을 통한 PC 기반의 몰입 형 가상 환경 시스템)

  • Oh Young-Il;Jo Kyoung-Hwan;Lee Ji-Hong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.103-112
    • /
    • 2006
  • In this paper, we propose a PC based immersive virtual environment system with expandability and compatibility in contrary to existing immersive virtual environment(IVE) systems which have been implemented by supercomputer or special computing system. The application based on commercial personal compute may have two major advantage: one is variety of resources, the other is user-friendly interface. This system intends to offer easy contact to IVE system, realistic images, and convenience. Also, the system can handle various virtual reality at real-time and make it easier to interface existing complicated haptic device. Geometric techniques are adopted to calculate and visualize the physical phenomenon to speed up the computing time. The proposed implementation method of PC based immersive virtual environment system is implemented to the example in which user move around inside of and interact with virtual office environment wearing data glove, behavior recognition devices, and HMD.

The Effect of Retinal and Perceived Motion Trajectory of Visual Motion Stimulus on Estimated Speed of Motion (운동자극의 망막상 운동거리와 지각된 운동거리가 운동속도 추정에 미치는 영향)

  • Park Jong-Jin;Hyng-Chul O. Li;ShinWoo Kim
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.3
    • /
    • pp.181-196
    • /
    • 2023
  • Size, velocity, and time equivalence are mechanisms that allow us to perceive objects in three-dimensional space consistently, despite errors on the two-dimensional retinal image. These mechanisms work on common cues, suggesting that the perception of motion distance, motion speed, and motion time may share common processing. This can lead to the hypothesis that, despite the spatial nature of visual stimuli distorting temporal perception, the perception of motion speed and the perception of motion duration will tend to oppose each other, as observed for objects moving in the environment. To test this hypothesis, the present study measured perceived speed using Müller-Lyer illusion stimulus to determine the relationship between the time-perception consequences of motion stimuli observed in previous studies and the speed perception measured in the present study. Experiment 1 manipulated the perceived motion trajectory while controlling for the retinal motion trajectory, and Experiment 2 manipulated the retinal motion trajectory while controlling for the perceived motion trajectory. The result is that the speed of the inward stimulus, which is perceived to be shorter, is estimated to be higher than that of the outward stimulus, which is perceived to be longer than the actual distance traveled. Taken together with previous time perception findings, namely that time perception is expanded for outward stimuli and contracted for inward stimuli, this suggests that when the perceived trajectory of a stimulus manipulated by the Müller-Lyer illusion is controlled for, perceived speed decreases with increasing duration and increases with decreasing duration when the perceived distance of the stimulus is constant. This relationship suggests that the relationship between time and speed perceived by spatial cues corresponds to the properties of objects moving in the environment, i.e, an increase in time decreases speed and a decrease in time increases speed when distance remains the same.