• Title/Summary/Keyword: Motion distance

Search Result 975, Processing Time 0.023 seconds

A Case Study on Center of Gravity Analysis when Performing Uchimata by Posture and Voluntary Resistance Levels of Uke in Judo[ll] (유도 허벅다리걸기 기술발휘 시 받기의 자세와 저항수준에 따른 중심변인 분석 사례연구[II])

  • Kim, Eui-Hwan;Kim, Sung-Sup;Chung, Chae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.237-257
    • /
    • 2005
  • It was to study as a following-research of "A Case Study on Center of Gravity(COG) Analysis when Performing Uchimata(inner thigh reaping throw) by Posture and Voluntary Resistance Levels(VRL) of Uke in Judo[I]". The purpose of this study was to analyze the COG variables when performing uchimata(inner thigh reaping throw) by two postures and voluntary resistance levels(VRL) of uke(reciver) in Judo. The subjects, who were one male judoka(YH) for 1992 Barcelona Olympic Games Olympian(silver medalist), and one male trainee; Y.I.University representative member (SDK), and were filmed on two S-VHS 16mm video cameras(60fields/sec.) through 3-dimensional motion analysis methods, that postures of uke were shizenhontai (straight natural posture) and jigohontai(straight defensive posture), VRL of uke were 0% and 100%, respectively. The kinematical variable was COG variable, distance of COG, and distance of resultant COG between uke and tori(the thrower), velocity and acceleration of COG. The data of this study collection were digitized by SIMI Motion Program computed the mean values and the standard deviation calculated for each variables. When performing uchinmata according to each posture and VRL of uke and classifying. From the data analysis and discussion, the conclusions were as follows : 1. Displacement of COG Subject YH, COG was the highest in kuzushi(balance -breaking), vertical COG was low when following in tsukuri(positioning; set-up), kake(application; execution), and COG was pattern of same character each postures and resistance, respectively. Subject SDK, COG was low from kumikata(engagement positioning) to kake, and COG was that each postures and resistance were same patterns, respectively. Subject YH, SDK, each individual, postures and resistance, vertical COG was the lowest in kake phase, when performing. 2. Distance of COG between uke and tori The distance of COG between uke and tori when performing, subject YH was $0.64{\sim}0.70cm$ in kumikata, $0.19{\sim}0.28cm$ in kake, and SDK was $0.68{\sim}0.72cm$ in kumikata, $0.30{\sim}0.42\;cm$ in kake. SDK was wider than YH. 3. Distance of resultant COG between uke and tori The distance of resultant COG between uke and tori when performing, subject YH was $0.27{\sim}0.73cm$ from kumikata to kake. and SDK was $0.14{\sim}0.34cm$ in kumikata, $0.28{\sim}0.65cm$ in kake. Jigohontai(YH:$0.43{\sim}0.73cm$,SDK:$0.59{\sim}0.65cm$) was more moved than shizenhontai(YH:$0.27{\sim}0.53cm$, SDK: $0.28{\sim}\;0.34cm$). 4. Velocity of COG The velocity of COG when performing uchimata, subject YH was fast anterior-posterior direction in kuzushi, ant.-post. and vertical direction fast in tsukuri and kake. SDK was lateral, ant.-post. and vertical direction in kuzushi, ant.-post. and vertical direction in tsukuri and ant.-post. direction in take, respectively. 5. Acceleration of COG The acceleration of COG when performing uchimata, The trend of subject YH was showed fast vertical direction in kuzushi and tsukuri, ant.-post. and vertical direction fast in kake. The trends of SDK showed lateral direction in kuzushi, lateral and ant.-post. direction in tsukuri and ant.-post. direction in kake, respectively.

A study on the relationship between the movement of animation and heritage of modern mechanism (애니메이션의 움직임과 근대 기계론 전통의 상관관계 연구)

  • Kim, Takhoon;Han, Tae-Sik
    • Cartoon and Animation Studies
    • /
    • s.30
    • /
    • pp.27-57
    • /
    • 2013
  • Animation which appeared with films in the late 19th century was a medium which came on obtaining nourishment from art historical style of modernism. However, the relation establishment between animation and modernism has been focused mainly on animation shapes, namely painted images. This sprang from explaining the relationship between animation and paintings, and for this reason, discussions of movements in animation were understood in tradition of chromophotograph of Muybridge and Jules Marey, or some characteristics owned by the live-action film. However, movements of animation were essentially different from the indexical sign of films or photogram, and objects of reproduction were different between them. Movements reproduced by animation are not ordinary movements, but expressions of or compressed movements and considerably systematic movements. As a result, these movements are far from reproduction of live-action film photogram. Rather, the logic of movements reproduced by animation comes near to controlling their motion scopes, time, distance etc. after dividing each part of the body. This is concluded in a standpoint of modern mechanism which is represented by Descartes and La Mettrie who tried to understand human body as a exchangeable machine. Design of modern mechanism ranging from modern society to industrial society and the age of modernism came to lead to analysis of physical motions of modern industrial society called composition of efficient movements understanding them as the law of nature rather than movements as nature. In the late 19th century, Taylor, F. W. and Gilbreth, Frank Bunker's studies of workers' working hours and 'motion study' were a way of constituting the frame of machine-human, which indicates that tradition of modern mechanism affected the entire modernism passing through industrial society. Further, we can see that motion studies conducted by them have almost similar characteristics to action analysis to study animation later in the name of 'timing'.

Experimental Study on Hydrofoil Arrangement and Longitudinal Moment Characteristics for Navigation Safety of High Speed Craft (고속선 운항 안정성을 위한 수중익 배치 및 종모멘트 특성에 관한 실험적 연구)

  • Park, Hwa-Pyeong;Kim, Sang-Hyun;Lim, Geun-Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • In this study, we have discussed about the effect of hydrofoil arrangement and longitudinal moment characteristic on longitudinal motion stability of fully-submerged hydrofoil by the experiment of tandem hydrofoil model. First of all, tandem hydrofoil model that has canard wing arrangement has been made and characteristics of lift force and drag force by performing the lift force and drag force measuring experiment has also been estimated. Besides, tandem hydrofoil model's wing arrangement which has the initial stability and self stability of longitudinal motion has also been determined. In longitudinal stability experiment of tandem hydrofoil model, the motion characteristic of pitch and heave and the longitudinal stability of foil borne condition by variation of self stability of longitudinal moment and longitudinal distance are estimated. The result from the experiment and it's important conclusion can be described as below; Increase the self stability for longitudinal moment, the higher self stability for pitch motions in a constant pitch angles. By increasing the self stability for longitudinal moment, the range of fluctuation of pitch motion and heave motion for pitch angle also will change relatively small and longitudinal stability is excellent. Lastly, when the lift force of hydrofoil is remain constants, we can conclude that securing the enough self stability for longitudinal moment is essential for stable foil borne condition of tandem hydrofoil.

Rail-Stress of High-Speed Railway Bridges using tong Rails and subjected to Spatial Variation of Ground Motion Excitations (지반운동을 공간변화를 고려한 고속철도 장대레일의 응력해석)

  • Ki-Jun Kwon;Yong-Gil Kim
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.132-138
    • /
    • 2003
  • The use of long rails in high-speed railway bridges causes additional stresses due to nonlinear behaviours between the rail and bridge decks in the neighbourhood of the deck joints. In the seismic response analysis of high-speed railway bridges, since structural response is highly sensitive to properties of the ground motion, spatial variation of the ground excitation affects responses of the bridges, which in turn affect stresses in the rails. In addition, it is shown that high-speed trains need very long distances to stop when braking under seismic occurrence corresponding to operational earthquake performance level so that verification of the safe stoppage of the train is also required. In view of such additional stresses due to long rails, sensibility of structural response to the properties of the ground motion and braking distance needed by the train to stop safely, this paper proposes and establishes a time domain nonlinear dynamic analysis method that accounts for braking loads, spatial variation of the ground motion and material nonlinearities of rails to analyze long rail stresses in high-speed railway bridges subjected to seismic event. The accuracy of the proposed method is demonstrated through an application on a typical site of the Korean high-speed railway.

Distance Measurement of Small Moving Object using Infrared Stereo Camera (적외선 스테레오 카메라를 이용한 소형 이동체의 거리 측정)

  • Oh, Jun-Ho;Lee, Sang-Hwa;Lee, Boo-Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.53-61
    • /
    • 2012
  • This paper proposes a real-time distance measurement system of high temperature and high speed target using infrared stereo camera. We construct an infrared stereo camera system that measure the difference between target and background temperatures for automatic target measurement. First, the proposed method detects target region based on target motion and intensity variation of local region using difference between target and background temperatures. Second, stereo matching by left and right target information is used to estimate disparity about real-time distance of target. In the proposed method using infrared stereo camera system, we compare distances in three dimension trajectory measuring instrument and in infrared stereo camera measurement. In this experiment from three video data, the result shows an average 9.68% distance error rate. The proposed method is suitable for distance and position measurement of varied targets using infrared stereo system.

Changes of Head Posture in Standing and Sitting Posture (서 있는 자세와 앉은 자세에서 두부자세의 변화)

  • Sang-Chan Lee;Kyung-Soo Han;Myung-Seok Seo
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.2
    • /
    • pp.305-315
    • /
    • 1996
  • This study was performed to investigate the changes of head posture according to natural standing or sitting posture. Twenty seven healthy dental students without any signs and symptoms of temporomandibular disorders participated in this study. Cervical resting posture (CRP) of the head in sagittal plane was measured by Cervical-Range-of-Motion $^\textregistered$(CROM, U.S.A.) and lateral cephalograph was taken in natural posture. The items related to angle in cephalograph were the angles of cranial and cervical inclination to true vertical line(VER/NSL, VER/AML), the angles of cervical inclination to nasion-sella line(CVT/NSL, OPT/NSL), the angles of comical inclination to horizontal line(CVT/HOR, OPT/HOR), the angle of cervical lordosis(CVT/OPT). The items related to line measurement were the distance from subocciput to Cl(Dl), Cl to C2(D2), C2 to C3(D3), C3 to C4(D4), the upper(PNS to posterior pharyngeal wall) and the lower(tongue base to posterior pharyngeal wall) pharyngeal space, the distance from nation to mention(Na-Me), and the radius of comical curvature from the first comical vertebra(Cl ) to the fifth cervical vertebra(C5). The data were analyzed with SAS/STAT program. The obtained results were as follows : 1. Most items related to angular measurement showed significant difference between in standing and sitting posture. The angles of CRP, CVT/NSL, OPT/NSL, CVT/HOR, OPT/HOR, and CVT/OPT were high in sitting posture, but the angles of VER/NSL, VER/NSL were low in sitting posture. 2. In vertebral distance, only the distance between C3 and C4 was differed by the posture, which decreased in sitting posture. In sitting posture, the distance from nasion to menton(Na-Me) was longer, but the radius was shorter than in standing posture. 3. Correlationship in angular measurements was almost same in both postures. Ceervical resting posture(CRP) was correlated with VER/NSL, VER\ulcornerNSL was correlated with CRP, CVT/NSL, and OPT/NSL, VER/AML was correlated with CVT/HOR, OPT/HOR, CVT/OPT, and the angle of cervical lordosis(CVT/OPT) was correlated with the radius. 4. Correlationship in linear measurement was observed only in among D3, D4, and radius. And the Na-Me was not correlated with any other items. From this results, The author concluded that the head posture in sitting was mote backward extended than in standing.

  • PDF

Biomechanical Comparative Analysis of Two Goal-kick Motion in Soccer (두 가지 축구 골킥 동작의 운동역학적 비교 분석)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2005
  • The purpose of this study is to reveal the effects of two different kicks, the drop kick and the punt kick, into the kicking motion, through the kinetic comparative analysis of the kicking motion, which is conducted when one kicks a soccer goal. To grasp kinetic changing factors, which is performed by individual's each body segment, I connected kicking motions, which were analyzed by a two dimension co-ordination, into the personal computer to concrete the digits of it and smoothed by 10Hz. Using the smoothed data, I found a needed kinematical data by inputting an analytical program into the computer. The result of comparative analysis of two kicking motions can be summarized as below. 1. There was not a big difference between the time of the loading phase and the time of the swing phase, which can affect the exact impact and the angle of balls aviation direction. 2. The two kicks were not affected the timing and the velocity of the kicking leg's segment. 3. In the goal kick motion, the maximum velocity timing of the kicking leg's lower segment showed the following orders: the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.018sec) in the drop kick, and the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.015sec) in the punt kick. It showed that whipping motion increases the velocity of the foot at the time of impact. 4. At the time of impact, there was not a significant difference in the supporting leg's knee and ankle. When one does the punt kick, the subject spreads out his hip joint more at the time of impact. 5. When the impact performed, kicking leg's every segment was similar. Because the height of the ball is higher in the punt kick than in the drop kick, the subject has to stretch the knees more when he kicks a ball, so there is a significant affect on the angle and the distance of the ball's flying. 6. When one performs the drop kick, the stride is 0.02m shorter than the punt kick, and the ratio of height of the drop kick is 0.05 smaller than the punt kick. This difference greatly affects the center of the ball, the supporting leg's location, and the location of the center of gravity with the center of the ball at the time of impact. 7. Right before the moment of the impact, the center of gravity was located from the center of the ball, the height of the drop kick was 0.67m ratio of height was 0.37, and the height of the punt kick was 0.65m ratio of height was 0.36. The drop kick was located more to the back 0.21m ratio of height was 0.12, the punt kick was located more to the back 0.28m ratio of height was 0.16. 8. There was not a significant difference in the absolute angle of incidence and the maximum distance, but the absolute velocity of incidence showed a significant difference. This difference is caused from that whether players have the time to perform of not; the drop kick is used when the players have time to perform, and punt kick is used when the players launch a shifting attack. 9. The surface reaction force of the supporting leg had some relation with the approaching angle. Vertical reaction force (Fz) showed some differences in the two movements(p<0.05). The maximum force of the right and left surface reaction force (Fx) didn't have much differences (p<0.05), but it showed the tendency that the maximum force occurs before the peak force of the front and back surface (Fy) occurs.

A Characteristics of Horizontal Swing Angle of Suspension Clamp in V type Suspension String Sets (V련 현수애자장치의 클램프 횡진 특성)

  • Sohn Hong-Kwan;Lee Hyung-Kwon;Min Byeong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.133-138
    • /
    • 2005
  • This paper presents a characteristics of horizontal swing angle in V type suspension string sets for 765kV T/L. The design of V type suspension string set does not differ from that of general string set for general towers, but it prevents instabilities from swing motion by the horizontal angle and by the wind pressure. We were designed specially 6 conductor yoke, arcing horn and earth horn. And we were decided to 550mm for a distance of strings. We were carried out characteristics of horizontal swing test and movement of mass center test for V-string sets of 400kN single, 300kN double and 400kN double. This products will be used for 765kV T/L of 1 circuit in suspension towers.

풀러린을 이용한 전자종이용 소자 최적구조 연구

  • Kim, Mi-Gyeong;Kim, Mi-Yeong;Kim, Seong-Min;Lee, Myeong-Hun;Lee, Seung-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.189-189
    • /
    • 2009
  • This work was focused on the dielectrophoretic force of fullerenes dispersed in liquid crystal host medium, which are investigated in the homogeneously aligned liquid crystal (NLC) cells driven by external electric field. A fullerene of 10 wt% was doped into the LC medium and its electric field induced motion was controlled by both in-plane and vertical electric field. When the electric field was applied, the fullerene start to move in direction of applied electric field. The dark, grey and white states in the proposed device can be obtained by suitable combination of the polarity of applied electric field. The w and l are the width and distance between the electrodes. The reflectance at different l was measured and was found to be increased with increasing l. The dynamical motions of fullerene particles in LC medium suggest that fullerene can be designed for electronic-paper like displays.

  • PDF

Unsupervised Single Moving Object Detection Based on Coarse-to-Fine Segmentation

  • Zhu, Xiaozhou;Song, Xin;Chen, Xiaoqian;Lu, Huimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2669-2688
    • /
    • 2016
  • An efficient and effective unsupervised single moving object detection framework is presented in this paper. Given the sparsely labelled trajectory points, we adopt a coarse-to-fine strategy to detect and segment the foreground from the background. The superpixel level coarse segmentation reduces the complexity of subsequent processing, and the pixel level refinement improves the segmentation accuracy. A distance measurement is devised in the coarse segmentation stage to measure the similarities between generated superpixels, which can then be used for clustering. Moreover, a Quadmap is introduced to facilitate the refinement in the fine segmentation stage. According to the experiments, our algorithm is effective and efficient, and favorable results can be achieved compared with state-of-the-art methods.