• Title/Summary/Keyword: Motion distance

Search Result 973, Processing Time 0.025 seconds

Effects of blast-induced random ground motions on the stochastic behaviour of industrial masonry chimneys

  • Haciefendioglu, Kemal;Soyluk, Kurtulus
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.835-845
    • /
    • 2012
  • This paper focuses on the stochastic response analysis of industrial masonry chimneys to surface blast-induced random ground motions by using a three dimensional finite element model. Underground blasts induce ground shocks on nearby structures. Depending on the distance between the explosion centre and the structure, masonry structures will be subjected to ground motions due to the surface explosions. Blast-induced random ground motions can be defined in terms of the power spectral density function and applied to each support point of the 3D finite element model of the industrial masonry system. In this paper, mainly a parametric study is conducted to estimate the effect of the blast-induced ground motions on the stochastic response of a chimney type masonry structure. With this purpose, different values of charge weight and distance from the charge centre are considered for the analyses of the chimney. The results of the study underline the remarkable effect of the surface blast-induced ground motions on the stochastic behaviour of industrial masonry type chimneys.

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

MICROLENS MASSES FROM 1-D PARALLAXES AND HELIOCENTRIC PROPER MOTIONS

  • Gould, Andrew
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.215-218
    • /
    • 2014
  • One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

Neural optimization networks with fuzzy weighting for collision free motions of redundant robot manipulators

  • Hyun, Woong-Keun;Suh, Il-Hong;Kim, Kyong-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.564-568
    • /
    • 1992
  • A neural optimization network is designed to solve the collsion-free inverse kinematics problem for redundant robot manipulators under the constraints of joint limits, maximum velocities and maximum accelerations. And the fuzzy rules are proposed to determine the weightings of neural optimization networks to avoid the collision between robot manipulator and obstacles. The inputs of fuzzy rules are the resultant distance, change of the distance and sum of the changes. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision avoidance of each joint. To show the validities of the proposed method computer simulation results are illustrated for the redundant robot with three degrees of freedom,

  • PDF

Measurement of proper motion and annual parallax with maser emission

  • Kim, Dong-Jin;Cho, Se-Hyung;Yun, Young-Joo;Choi, Yoon Kyung;Yoon, Dong-Hwan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2017
  • We present the results of astrometric observations using water masers around a semi-regular variable star R Crt. The observations were carried out for two years with the Korean VLBI Network (KVN). The absolute positions of the water masers from R Crt are successfully obtained at 10 epochs in total. By tracking the positions of the water maser emission, we directly measured the annual parallax and distance of R Crt. The measured distance to R Crt enables us to estimate the actual 3D velocity of water masers around R Crt. Our research suggests the possibility of performing astrometric studies with the KVN. As a next step, we are going to enhance the astrometric accuracy by observing SiO masers.

  • PDF

Fabrication of Electrostatically Actuated Nano Tweezers Using FIB(Focused Ion Beam) (집속이온빔 장치를 이용한 정전기 구동 나노트위저의 제작)

  • Chang Ji-Young;Kim Jong-Baeg;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.495-496
    • /
    • 2006
  • Electrostatically actuated nanoscale tweezers are fabricated on micro processed electrodes using FIB-CVD. Heavily doped electrode works as interconnection platform for controlling nanoscale devices. Short bent pillars are deposited to control the gap distance of main tweezers fabricated on bent ones. Two types of tweezers which have different gap distances are fabricated and tweezing motion was successfully demonstrated. The threshold voltages at snap-down of the pillars are dependent on the initial gap distance of the unactuated pillars, and the measured values were 93V for 3.6um and 30V for 2.2um. The dimension of nano tweezers and initial gap distances are controllable as demonstrated and we expect more complicated 3-dimensional shapes are also possible.

  • PDF

A Nonlinear Model-Based Anti-Swing Control for Overhead Cranes with High Hoisting Speeds (권상/권하 속도가 큰 경우 크레인의 비선형 무진동 제어)

  • Lee, Ho-Hun;Jeon, Jong-Hak;Choe, Seung-Gap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1461-1467
    • /
    • 2001
  • This paper proposes a new approach for the ant-swing control of overhead cranes. The proposed control consists of a model-based anti-swing control scheme and a practical path planning scheme. The anti-swing control scheme is designed based on the Lyapunov stability theorem; the proposed control does not require the usual constraints of small load mass, small load swing, slow hoisting speed, and small hoisting distance, but guarantees asymptotic stability while keeping all internal signals bounded. The path planning scheme is designed based on the concepts of minimum-time control and anti-swing control; the proposed path planning generates near-minimum-time trajectories independently of hoisting speed and distance. The effectiveness of the proposed control is shown by computer simulation.

A Method of Boresight Error Compensation for Missile Radome (유도탄용 레이돔 시선각 오차 보정 기법)

  • Kim, Gwang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.56-63
    • /
    • 2005
  • The radome boresight error degrades the microwave seeker ability and the missile guidance performance. It increases the miss distance, also. This paper propose a method of radome boresight error measurement and compensation. The compensation method consist of radome analysis and radome compensation. In the radome analysis stage, we can know that the electromagnetic characteristics distorted by radome. In the compensation stage, the look-up table is built and used for compensation. The test uses a FMS(Flight motion simulator) and adjusts the FMS setup error for more accuracy. The result shows that not using an elaborate radome measurement equipment, the radome boresight error is well compensated easily.

Probabilistic analysis of structural pounding considering soil-structure interaction

  • Naeej, Mojtaba;Amiri, Javad Vaseghi
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.289-304
    • /
    • 2022
  • During strong ground motions, adjacent structures with insufficient separation distances collide with each other causing considerable architectural and structural damage or collapse of the whole structure. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. This paper attempts to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. Actually, the aim of this study is to evaluate the influence of foundation flexibility on probabilistic evaluation of structural pounding. A Hertz-damp pounding force model has been considered in order to effectively capture impact forces during collisions. In total, 5.25 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of adjacent structures during earthquakes and generally increases the pounding probability.

Motion-Estimated Active Rays-Based Fast Moving Object Tracking (움직임 추정 능동 방사선 기반 고속 객체 추적)

  • Ra Jeong-Jung;Seo Kyung-Seok;Choi Hung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.15-22
    • /
    • 2005
  • This paper proposed a object tracking algorithm which can track contour of fast moving object through motion estimation. Since the proposed tracking algorithm is based on the radial representation, the motion estimation of object can be accomplished at the center of object with the low computation complexity. The motion estimation of object makes it possible to track object which move fast more than distance from center point to contour point for each frame. In addition, by introducing both gradient image and difference image into energy functions in the process of energy convergence, object tracking is more robust to the complex background. The results of experiment show that the proposed algorithm can track fast moving object in real-time and is robust under the complex background.