The Primary type of swinging motion in human movement is that which is characteristic of a pendulum. The two types of pendulums are identified as simple and compound. A simple pendulum consist of a small body suspended by a relatively long cord. Its total mass is contained within the bob. The cord is not considered to have mass. A compound pendulum, on the other hand, is any pendulum such as the human body swinging by hands from a horizontal bar. Therefore a compound pendulum depicts important motions that are harmonic, periodic, and oscillatory. In this paper one discusses and compares two algorithms of Newton's method(F = m a) and Euler's method (M = $I{\times}{\alpha}$) in compound pendulum. Through exercise model such as human body with weight(m = 50 kg), body length(L = 1.5m), and center of gravity ($L_c$ = 0.4119L) from proximal end swinging by hands from a horizontal bar, one finds kinematic variables(angle displacement / velocity / acceleration), and simulates kinematic variables by changing body lengths and body mass. BSP by Clauser et al.(1969) & Chandler et al.(1975) is used to find moment of inertia of the compound pendulum. The radius of gyration about center of gravity (CoG) is $k_c\;=\;K_c{\times}L$ (단, k= radius of gyration, K= radius of gyration /segment length), and then moment of inertia about center of gravity(CoG) becomes $I_c\;=\;m\;k_c^2$. Finally, moment of inertia about Z-axis by parallel theorem becomes $I_o\;=\;I_c\;+\;m\;k^2$. The two-order ordinary differential equations of models are solved by ND function of numeric analysis method in Mathematica5.1. The results are as follows; First, The complexity of Newton's method is much more complex than that of Euler's method Second, one could be find kinematic variables according to changing body lengths(L = 1.3 / 1.7 m) and periods are increased by body length increment(L = 1.3 / 1.5 / 1.7 m). Third, one could be find that periods are not changing by means of changing mass(m = 50 / 55 / 60 kg). Conclusively, one is intended to meditate the possibility of applying a compound pendulum to sports(balling, golf, gymnastics and so on) necessary swinging motions. Further improvements to the study could be to apply Euler's method to real motions and one would be able to develop the simulator.
본 연구는 사용자에게 새로운 가상현실 환경에서 새로운 경험과 현존감을 제공하기 위하여 3인칭 시점의 가상현실 콘텐츠 제작 공정을 제안한다. 이를 위해 우선 이야기, 재미요소 그리고 게임성을 포함하는 3인칭 관찰자 시점의 가상현실 콘텐츠를 제작한다. 이는 기존의 가상현실 콘텐츠와 다른 3인칭 시점에 적합한 인터페이스를 사용자가 사전에 학습할 수 있는 튜토리얼 장면과 배경 이야기를 토대로 게임적 요소를 활용하여 목적을 달성하는 콘텐츠 장면으로 구성한다. 다음은 3인칭 가상현실 콘텐츠에 적합한 인터페이스를 설계한다. 본 연구는 손을 사용하여 가상환경 또는 객체와 상호작용할 수 있는 인터페이스를 제안한다. 제안하는 인터페이스는 캐릭터의 이동, 다중 선택을 포함한 가상객체의 선택, 가상공간을 활용한 3차원 메뉴 제어의 3단계로 구성한다. 마지막으로 제안한 인터페이스를 통해 제작된 3인칭 가상현실 콘텐츠를 높은 만족감으로 편리하게 제어할 수 있음을 설문 실험을 통해 확인한다.
1992년 11월부터 1993년 9월 사이 동해남서해역에서 조사한 인공위성 추적부 이, CTD, ADCP 자료를 이용하여 와류와 표층해류의 물리적 구조를 분석하였다. 부이의 이동궤적으로부터 울릉분지내에서 동한난류의 사행과 연구해역에서 다양한 크기의 시계방향과 반시계방향의 와류가 존재하는 것을 처음으로 직접 해류조사로 밝힐 수 있었다. 비교적 오래 지속되는 시계방향의 와류가 울릉분지내와 북부(일 본)분지의 남서쪽에서 관측된 반면에 반시계방향의 와류가 속초와 동해시 사이의 연안역에서 여름철에 관측되었다. 울릉분지의 와류는 적어도 관측기간 중에는 분지 내에 머물러 있었으며, 반시계방향의 와류는 냉수의 존재와 밀접한 관련이 있는 것 으로 나타났다. 북부분지의 시계방향 와류는 울릉분지의 것보다 크며 더 길쭉한 타원 형태를 지녔다. 울릉분지의 와류는 주축과 종축이 각각 120 km, 70 km이고, 회전주기는 13.6일, 평균회전속도는 24 cm/s, 평균 와동운동에너지는 392 $cm^{2}$/s$^{2}$ 이다. 북부분지의 와류는 주축과 종축이 각각 168 km, 86 km이고, 회전 주기는 14.9일, 평균회전속도는 29 cm/s, 평균 와동운동에너지는 629 $cm^{2}$/s/ sup 2/ 의 특성을 보였다. 와류의 평균이동속도는 두 경우 모두 약 3 cm/s이다. 울릉분지내에서 ADCP로 관측한 표층해류와 지형류의 상호일치는 울릉분지의 와류 가 지형평형을 이루고 있음을 시사한다. 관측된 와류는 해저지형에 강하게 지배 되어 있다.
Digital Radiography(DR) 시스템은 임상현장에서 아날로그 시스템을 대체하고 널리 이용되고 있다. DR을 이용하여 얻어진 X선 영상의 해상력을 결정짓는 요소에는 이용되는 검출기의 고유 해상력, 피사체의 대조도 및 특성, X선 선질, X선원의 산란, DR 검출기의 성능, X선 변환효율 및 초점의 크기, 피사체의 움직임 등이 있다. DR 검출기를 구성하는 요소에는 X선 포획 요소, 커플링 요소, 정보수집 요소가 있는데 이들은 시스템의 성능에 영향을 미치며, 그 성능은 해상력으로 평가된다. 의료영상 시스템의 해상력은 촬영대상물의 조직 간의 해부학적 영상을 구분하는 능력을 나타낸다. 해상력 평가를 위해 Modulation Transfer Function(MTF)이 보편적으로 이용되고, MTF는 입력 공간주파수 성분에 대한 출력 공간주파수 성분의 비를 나타내는데, 수학적으로 MTF는 Point Spread Function(PSF) 입력에 대한 시스템의 주파수 응답이며 Edge Phantom을 이용한 결과 영상에서 추출된 Line Spread Function(LSF)을 Fourier Transform하면 얻을 수 있다. 일반적으로 임상현장에서 의료영상시스템의 이용 및 관리의 책임은 방사선사가 맡고 있지만, MTF를 측정하기 위해서는 공학적, 수학적 기초 및 C, Fortran, Matlab등의 프로그램 작성 능력이 필요하기 때문에 비 공학도는 정확한 측정이 불가능하다. 의료영상 시스템의 성능 관리 및 최상의 상태를 유지하기 위해 시스템의 성능평가가 이뤄져야 하는데, 이를 위해 본 연구에서는 비공학도가 해상력 성능평가를 할수 있도록 ImageJ 및 Excel을 이용하여 해상력 평가를 할 수 있도록 방법을 제시하고, 제안된 방법을 이용해 계산된 결과와 프로그래밍을 이용해 계산된 결과의 비교를 통해 본 논문에서 제시하는 방법의 유용성을 확인하였다.
추가령 단층곡의 진화를 고찰하기 위하여, 철원-연천일원의 제4기 및 후기 백악기 화산암류로부터 채취한 총 16개 장소에서 163개 정향시료에 대하여 고지자기 연구를 실시하고 특성잔류자화를 구하였다. 후기 백악기의 지장봉 산성 화산암복합체의 상부 산성화산암규로부터 구한 고지자기극의 위치는 216.8$^{\circ}$E/7l.6$^{\circ}$N(dp=7.1$^{\circ}$, dm=10.0$^{\circ}$)로써 경상분지의 동시기의 것과 일치하는데 이는 추가령 단층선이 후기 백악기 이래로 커다란 지구조 운동을 경험하지 않은 것으로 해석된다. 제4기 전곡 현무암에 대한 연구 곁과(134.2$^{\circ}$E/86.5$^{\circ}$N; $A_{ 95}$=7.1$^{\circ}$)도 현재의 지구회전축과 통계적으로 일치함으로서 이를 지지한다. 그러나, 지상봉 산성화산암복할체의 하부의 고기 현무암류로부터 구한 특성잔류자화 방향은 장소간에 심하게 산포되어, 본 암체의 화산활동이 추가령 단층곡의 좌수향 주향이동단층에 기인하여 형성된 것으로 해석되었다 이는 후기 백악기의 추가령 단층곡의 진화사를 밝혀주는 중요한 증거이며, 동아시아의 FR 조구조 모델에 의해 잘 해석된다 이 논문은 FR모델로 조형한 추가령 단층곡의 생성과 진화에 대한 논의와 해석을 제공한다.다.
고층빌딩이나 해양 라이저와 같은 세장 구조물은 구조시스템의 동적 불안정의 주요 원인인 와류유기진동(vortex-induced vibration, VIV)에 의한 동하중에 매우 취약하다. 와류유기진동이 라이저의 고유진동수 영역에서 발생하는 경우 Lock-in현상으로 피로파괴의 우려가 있다. 본 논문에서는 Lock-in 영역에서 구조물과 유동의 동적거동에 대한 수치해석을 다루었으며, 유동조건 변화에도 불구하고 공진 주파수가 유지되는 현상에 대해 분석하였으며, 유입유동에 대해 수직방향으로 자유진동하는 1자유도의 2차원 원형실린더 단면에 대한 비정상 층류를 가정하였다. 각 시간 단계에서 물체의 움직임을 고려하여 유동장 격자를 재생성하며 비정상 유동과 물체의 운동에 대한 지배방정식을 순차적으로 수치해석하여 유체-구조 연성해석을 수행하였다. 결과는 선행연구와 잘 일치함을 보여주었고, Lock-in 현상에 대한 특성을 잘 나타내었다. Lock-in 영역에서는 양력뿐만 아니라 항력도 크게 증가함을 보여주었으며, 실린더의 수직변위는 직경의 20%까지 이름을 나타내었다. 양력과 수직변위의 상관분석을 통해 실린더가 Lock-in 영역에서 양력과 수직변위의 위상차가 동기로부터 반동기로 천이함을 확인하였으며, 이러한 변화가 Lock-in 영역에서 나타나는 공진거동의 원인이 되는 것으로 판된되었다.
The study were to assess technical factors between the high score group and the low score group, from the subjects of 16 male national gymnasts, and to analyze the kinematical characteristic and main technical cause on technique of Akopian's 3D motion analysis of the male vaulting game in 2001 classification championship. The result of this study is this. There were not so much difference between the two groups in term; of the time of board contact, pre-flight, and total performance, but it takes shorter time when the players who are in the high point group take down the board, and they take long time for post-flight(p<.01). The high point group has a longer perpendicular distance in the moment of horse taking off, 0.05m on the average, than the low point group. The high point group shows 0.16m higher on the average than the other group in term; of the height of post-flight(p<.01). In the phase of board contact, the range of horizontal velocity at board take on were $7.66m/s{\sim}7.33m/s$, but there weren't significantly statistic differences between two groups. The hight score group were 0.68m/s faster than the low point group at the horizontal velocity at board take off event(<.05). About the average horizontal velocity of deceleration, AG1(-1.95m/s) reduces the speed more than AG2(-1.57m/s)(p<.05). And the hight score group were 0.37m/s faster than the low point group at the vertical velocity at horse take off event(<.05). When board taking off, the projectile angle of com were $38.7{\sim}37.8degree$ on the average. the comparative groups show almost same results. When horse taking off, the HPVy of the high point group were 37.6 degree which were a little higher than the low point group. The angular velocities of the players who takes on the horse with a right hand and then takes off with a left hand in the high point group were 14.97rad/sec, 10.82rad/sec in the low point group. However, the angular velocity of the players who takes on the horse with a left hand and then takes off on a right hand with the high point group were 14.97rad/sec, 15.56rad/sec in the low point group.
본 연구에서는 지형이 위치별로 자기 상사성을 가진다는 전제하에 프랙탈 차원을 이용한 지형의 복잡성을 표현해 보고자 한다. 특히 수치지도 분석기법에서 표면적요소를 산정하여 프랙탈 차원을 산정하도록 한다. 또한 프랙탈 차원과 지형 형상요소들과의 관계를 규명하고, 프랙탈 차원의 통계적 대표치로서의 기능에 대해 고찰해 보려한다. 본 연구에서는 GIS기법을 적용하여 지형의 프랙탈 특성을 구하였다. 길이를 이용하여 하천이나 해안선의 1차원적 프랙탈 특성을 구하는 것에서 벗어나 면적의 개념 즉, 투영면적과 표면적을 이용하여 지형의 2차원적 프랙탈 특성을 구해보았다. 그리고 프랙탈 차원과 평균경사도와의 상관관계를 검토해 보았다. 연구결과 다음과 같은 결론을 얻게 되었다. 1) 프랙탈 차원을 구하기 위한 척도로서 표면적을 사용한 경우에서도 일반적 프랙탈 차원의 특성과 같이 지형의 복잡성과 비례관계의 성질을 나타내었다. 2) 본 연구에서 제안한 표면적을 이용한 프랙탈 차원은 영천지역에서는 $2.10{\sim}2.24$이고 의성지역은 $2.02{\sim}2.15$으로 나타났다. 이 값들은 통상 알려진 지형의 프랙탈 차원인 $2.10{\sim}2.20$의 범위에 든다. 3) 평균 경사도와 프랙탈 차원의 상관관계는 평균경사도가 $25^{\circ}$ 이상인 지역에서 결정계수 $R^2$값이 $25^{\circ}$ 이하인 지역에 비해 30% 정도 작아진다. 그러므로 모든 지형의 거침도를 표현하기 위해선 프랙탈 차원이 알맞을 것으로 본다. 본 연구결과를 통해 투영면적과 표면적을 이용한 프랙탈 차원 산정공식이 유효함을 확인하였다. 그러나 본 기법이 충분히 타당성을 인정받기 위해선 연구대상지역의 확대를 통하여 경사도와 표면적, 프랙탈 차원과의 상관관계를 더욱 명확히 할 필요가 있다. 향후 연구에선 지형의 복원에 적용 할 수 있을 것이며 fBm모델을 이용하여 교통류 해석에도 적용이 가능할 것이다.
지진원, 지각감쇠 및 구조물과 지반상호간의 동적 특성 등을 신뢰성 있게 평가하기 위해 지반의 증폭특성을 반드시 고려하여야 한다. 주파수 영역에서 H/V 스펙트럼 비를 구하는 방법은 Nakamura(1989)에 의해 처음으로 제시되어 초기에는 지반의 상시미동의 표면파의 특성을 이해하기 위해 제시되어 한계점이 존재하나 근래에 와서 강진동의 전단파 에너지 등에 적용범위가 확장되면서 지반의 동적인 증폭특성(지반증폭함수) 연구에 많이 이용되고 있다. 본 논문에서는 오대산 지진(2007/01/20)으로부터 관측된 9개의 지반진동을 이용하여 H/V 스펙트럼 비를 분석하였고 결과를 이용하여 국내에 분포되어 있는 지진관측소 부지의 지반증폭 특성을 분석하였다. 분석결과 대부분의 지진관측소의 H/V 스펙트럼 비는 저주파수 영역에서는 고주파수 영역에 비해 다소 안정된 지반증폭 특성을 보여주었다. 하지만 지진관측소마다 고유주파수, 고주파수 및 저주파수 대역에서 서로 다른 지반증폭 특성을 보여주었다. 특히 각각 관측소 부지의 고유주파수는 각 관측소의 지진자료의 질을 좌우하므로 정확한 분석이 필요하다. 관측된 지반진동 자료를 이용하여 지진원 및 지각감쇠 요소를 분석할 경우 결과값의 왜곡을 피하기 위해 지반증폭 정보를 제거하면 신뢰성이 보다 향상된 값을 얻을 수 있다. 물론 지반증폭은 국내 지반의 분류 연구에 중요한 정보를 제공한다는 점에서 대단히 중요하다.
본 연구는 순수 면내모멘트를 발생시키는 선형적으로 변하는 수직응력을 받고 있는 단순지지된 마주보는 두 모서리와 자유경계를 가지는 직사각형 판의 자유진동과 좌굴의 엄밀해를 구하였다. 정현적으로 가정된 하중방향(x)으로의 변위함수는 단순지지 경계조건을 만족시키며, 평판을 지배하는 편미분 운동방정식 을 y 방향으로의 변계수를 갖는 상미분방정식으로 만든다. Frobenius법을 통하여, y방향으로의 멱급수를 가정하면 이 식을 엄밀하게 풀 수 있으며, 그 식의 합당한 계수를 구할 수 있다. 자유경계조건을 y=0과 b에 적용하면, 고유진동수와 임계좌굴모멘트를 구할 수 있는 4차의 특성행렬식이 만들어진다. 본 논문에서는 이 급수해의 수렴성이 면밀히 조사되었으며, 임계 좌굴모멘트의 수치결과와 모드형상이 주어진다. 상대적으로 정확도가 떨어지는 1차원적인 보 이론으로 구한 결과치와의 비교연구가 이루어진다. 또한 자유진동수와 모드형상 주어진다. 프와송비(v)의 변화에 따른 좌굴모멘트와 고유진동수의 변화가 도표로 주어진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.