• Title/Summary/Keyword: Motion analysis system

Search Result 2,509, Processing Time 0.036 seconds

Design and Tracking Control of 4-DOF Motion Platform for Bicycle Simulator (자전거 시뮬레이터용 4자유도 운동판의 설계 및 추적 제어)

  • 성지원;신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.235-240
    • /
    • 2001
  • A four degrees of freedom (dof) motion platform for bicycle simulator is developed. The motion platform, capable of the vertical linear and three angular motions, is designed based on analysis of the typical motion characteristics revealed by the existing six dof bicycle simulator. The platform essentially consists of two parts: the three dof parallel manipulator, consisting of a moving platform, a fixed base and three actuators, and the turntable to generate the yaw motion. The nonlinear kinematics and dynamics of the three dof parallel manipulator with multiple closed loop chains are analyzed for tracking control of the motion platform. The tracking performances of the three control schemes are experimentally compared: the computed torque method (CTM), the sliding mode control (SMC) and the PD control. The CTM and SMC, incorporated with the system dynamics model, are found to be equally better in performance than the PD controller, irrespective of the presence of external disturbance.

  • PDF

Reliability of Quantifying Maximal Mouth Opening and Lateral Mandibular Shift in Individuals With and Without Temporomandibular Disorder Using Three-dimensional Ultrasound-based Motion Analysis

  • Oh, Jae-seop;Kim, Si-hyun;Kyung, Moon-su;Park, Kyue-nam
    • Physical Therapy Korea
    • /
    • v.26 no.3
    • /
    • pp.99-105
    • /
    • 2019
  • Background: Although magnetic resonance imaging is accurate, it is expensive to measure the movement of temporomandibular joint. The three-dimensional (3D) motion analysis system is an inexpensive measurement tool. Objects: This study examined the reliability of quantifying the mouth opening and lateral mandibular shift and differences between individuals with and without temporomandibular disorder (TMD) using the hygienic method of surface markers on the skin with 3D ultrasound-based motion analysis. Methods: This study included 24 subjects (12 with and 12 without TMD). Temporomandibular joint motion during mouth opening was recorded using two surface markers with 3D ultrasound-based motion analysis. An intraclass correlation coefficient [ICC (3,k)] was used to confirm the intrarater reliability of quantifying kinematic temporomandibular joint motion, and an independent t-test was used to evaluate differences in maximal mouth opening and lateral mandibular shift between the two groups. Results: Assessment of mouth opening and lateral mandibular shift showed excellent test-retest reliability with low standard error of measurement. The lateral mandibular shift and opening-lateral mandibular shift ratio were significantly increased in the TMD group during maximum mouth opening (p<.05). However, no significant difference in maximal mouth opening was observed between the groups with and without TMD (p>.05). Conclusion: This hygienic and simple surface marker method can be used to quantify the mouth opening and lateral mandibular shift at the end-range of mouth opening. The TMD group showed an increased lateral mandibular shift movement at the end-range of mouth opening. The lateral mandibular shift movement can be regarded as a symptom in the diagnosis and treatment of TMD.

The Development of Interactive Ski-Simulation Motion Recognition System by Physics-Based Analysis (물리 모델 분석을 통한 상호 작용형 스키시뮬레이터 동작인식 시스템 개발)

  • Jin, Moon-Sub;Choi, Chun-Ho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • In this research, we have developed a ski-simulation system based on a physics-based simulation model using Newton's second law of motion. Key parameters of the model, which estimates skier's trajectory, speed and acceleration change due to skier's control on ski plate and posture changes, were derived from a field test study performed on real ski slope. Skier's posture and motion were measured by motion capture system composed of 13 high speed IR camera, and skier's control and pressure distribution on ski plate were measured by acceleration and pressure sensors attached on ski plate and ski boots. Developed ski-simulation model analyzes user's full body and center of mass using a depth camera(Microsoft Kinect) device in real time and provides feedback about force, velocity and acceleration for user. As a result, through the development of interactive ski-simulation motion recognition system, we accumulated experience and skills based on physics models for development of sports simulator.

A Study on Moored Floating Body using Non-linear FEM Analysis

  • Ku, Namkug
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • In this study, the behavior of the coupled mooring system and floating body is analyzed. The related works are introduced for the mooring analysis of the floating body. Equations motion are introduced for calculating mooring force connected with the floating body. For formulating the equations of motion, the concept of the constrained force is applied for compact expression of it. The input and output data of the module for calculating mooring force is defined. The static analysis and quasi-static analysis are performed. For the analysis, equilibrium equation for elastic catenary mooring line is used by employing finite element method, and the C# solver is developed in this research. The analysis results are validated by comparing with other research results.

Vibration Analysis of a Multi-Stage Rotating Shaft Shape (다단 회전축계 형상의 진동 연구)

  • Song, OhSeop;Park, Sangyun;Kang, Sunghwan;Seo, Jungseok;Kim, Sunhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.730-735
    • /
    • 2013
  • This paper contains various vibration analysis of multi-stage shaft shape such as the bending, torsional and axial vibration. The shaft system is modeled as Timoshenko beam with the transverse shear and rotary inertia effect and the equation of motion is derived by Hamilton's principle with considering clamped-free boundary condition. Then, eigenvalue problem of discrete equation of motion for multi-stage shaft model is solved and got results of the natural frequency through the numerical analysis. Obtained numerical analysis results through Matlab program were compared with those of FEM analysis to verify the results. This study suggests that design of shaft system be consider torsional and axial vibration as well as bending vibration.

  • PDF

Biomechanical Effects of Posterior Dynamic Stabilization System on Lumbar Kinematics: A Finite Element Analysis (Posterior Dynamic Stabilization System의 요추거동에 대한 생체역학적 분석)

  • Ahn, Y.H.;Chen, Wen-Ming;Jung, D.Y.;Park, K.W.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.139-145
    • /
    • 2008
  • Many recent studies suggest that the posterior dynamic stabilization(PDS) can be a more physiologically-relevant alternative to the rigid fixation for the patients suffering from low back pain. However, its biomechanical effects or clinically proven efficacies still remain unknown. In this study, we evaluated kinematic behaviors of the lower lumbar spine with the PDS system and then compared to those of the rigid fixation system using finite element (FE) analysis. A validated FE model of intact lumbar spine(L2-L5) was developed. The implanted model was then constructed after modification from the intact to simulate two kinds of pedicle screw systems (PDS and the rigid fixation). Hybrid protocol was used to flex, extend, laterally bend and axially rotate the FE model. Results showed that the PDS systems are more flexible than rigid fixation systems, yet not flexible enough to preserve motion. PDS system allowed $16.2{\sim}42.2%$ more intersegmental rotation than the rigid fixation at the implanted level. One the other hand, at the adjacent level it allowed more range of motion ($2.0%{\sim}8.3%$) than the rigid fixation. The center of rotation of the PDS model remained closer to that of the intact spine. These results suggest that the PDS system could be able to prevent excessive motion at the adjacent levels and restore the spinal kinematics.

Development of Motion Capture System (동작 획득 시스템의 개발)

  • U, Jeong-Jae;Choe, Hyeong-Sik;Kim, Yeong-Sik;Jeon, Dae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.139-146
    • /
    • 2002
  • We developed a motion capture system to utilize informations on the human walking motion. The system is composed of the mechanical and electronic devices to obtain the joint angle data and the software to analyze the obtained data and to transform the data into the input for a biped walking robot. The mechanical system is composed of a pair of links with 3 revolute joints, on which potentiometers are attached on joint axes to sense rotation angles. Analog signals from potentiometers are transformed into the digital data through the low pass filter and the A/D converter, and then which are stored at the computer. We analyzed the walking characteristics by applying FFT to the digital data, and then performed a 3-D computer simulation using the data. Finally, We apply the processed data to a biped walking robot.

Analysis for the stabilizer design of the large driving system (대형 구동시스템의 안정화장치 설계에 관한 연구)

  • 김광태;이양원;이봉기;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.113-117
    • /
    • 1989
  • Generally, stabilization system is surely needed for the compensation of the ship motion. In this paper, the study investigated stabilizer design for the large driving system. We make a performance analysis for the stabilization scheme through the computer simulation.

  • PDF

Implementation of Human Motion Following Robot through Wireless Communication Interface

  • Choi, Hyoukryeol;Jung, Kwangmok;Ryew, SungMoo;Kim, Hunmo;Jeon, Jaewook;Nam, Jaedo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.36.3-36
    • /
    • 2002
  • $\textbullet$ Motion capture system $\textbullet$ Exoskeleton mechanism $\textbullet$ Kinematics analysis $\textbullet$ Man-machine Interface $\textbullet$ Wireless communication $\textbullet$ Control algorithm

  • PDF

A Study on the Development of Overload Detecting Pad for Low Speed WIM System (저속 WIM 시스템용 과적검지 패드 개발에 관한 연구)

  • Lee, Choon-Man;Choi, Young-Ho;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.179-184
    • /
    • 2017
  • Recently, traffic accidents and damage on the highway have increased because of overloaded vehicles. The existing overload-detecting system has a low accuracy rate. An overload-detecting system using a weigh-in-motion (WIM) system has been developed to solve this problem. The WIM system can be used to detect overloaded vehicles by measuring the weight of the vehicles. The WIM system is divided into high-speed and low-speed types. The inaccuracy rate in the low-speed WIM system results mainly from the low response rate of the sensor when the velocity is moving at more than 20 km/h. In this study, a low-speed overload-detecting pad with a hydraulic structure using a WIM system was developed to make the system more accurate. The structural and formal analysis was carried out by using a finite element method (FEM) in order to analyze the structural stability and the extrusion velocity of the system. In addition, a static load test was performed to confirm the linearity and accuracy of the pad.