• Title/Summary/Keyword: Motion Monitoring

Search Result 464, Processing Time 0.031 seconds

A Study of Sensing Locations for ECG Monitoring Clothing based on the Skin Change rate (체표 변화에 기반한 심전도 모니터링 의류의 센싱 위치 연구)

  • Cho, Hakyung;Cho, Sang woo
    • Fashion & Textile Research Journal
    • /
    • v.17 no.5
    • /
    • pp.844-853
    • /
    • 2015
  • Recently, according to change of lifestyle and increase of concerning in health, needs of the smart clothing based on the vital sign monitoring have increased. Along with this trend, smart clothing for ECG monitoring has been studied various way as textile electrode, clothing design and so on. Smart clothing for ECG monitoring can become a comfortable system which enables continuous vital sign monitoring in daily use. But, smart clothing for ECG monitoring has a weakness on artifact during motion. One of the motion artifact caused by shifting of the electrode position was affected skin change by motion. The aim of this study was to suggest electrode locations for clothing of ECG monitoring to reduce of motion artifacts. Therefore, change of skin surface during the movement were measured and analyzed in order to find location to minimize motion artifacts in ECG monitoring clothing by 3D motion capture. For the experiment, the subjects consisted of 5 males and 5 females in their 20' with average physique. As a result, the optimal location for ECG monitoring was deducted under the bust line and scapula which have least motion artifact. These locations were abstracted to be least affected by movement in this research.

Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine

  • Kim, C.M.;Cho, J.R.;Kim, S.R.;Lee, Y.S.
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.333-350
    • /
    • 2017
  • Differing from the fixed-type, the dynamic motion of floating-type offshore wind turbines is very sensitive to wind and wave excitations. Thus, the sensing and monitoring of its motion is important to evaluate the dynamic responses to the external excitation. In this context, a monitoring system for sensing and processing the wind-induced dynamic motion of spar-type floating offshore wind turbine is developed in this study. It is developed by integrating a 1/00 scale model of 2.5MW spar-type floating offshore wind turbine, water basin equipped with the wind generator, sensing and data acquisition systems, real-time CompactRIO controller and monitoring program. The scale model with the upper rotatable blades is installed within the basin by means of three mooring lines, and its translational and rotational motions are detected by 3-axis inclinometer and accelerometers and gyroscope. The detected motion signals are processed using a real-time controller CompactRIO to calculate the acceleration and tilting angle of nacelle and the attitude of floating platform. The developed monitoring system is demonstrated and validated by measuring and evaluating the time histories and trajectories of nacelle and platform motions for three different wind velocities and for eight different fairlead positions.

Advance Crane Lifting Safety through Real-time Crane Motion Monitoring and Visualization

  • Fang, Yihai;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.321-323
    • /
    • 2015
  • Monitoring crane motion in real time is the first step to identifying and mitigating crane-related hazards on construction sites. However, no accurate and reliable crane motion capturing technique is available to serve this purpose. The objective of this research is to explore a method for real-time crane motion capturing and investigate an approach for assisting hazard detection. To achieve this goal, this research employed various techniques including: 1) a sensor-based method that accurately, reliably, and comprehensively captures crane motions in real-time; 2) computationally efficient algorithms for fusing and processing sensing data (e.g., distance, angle, acceleration) from different types of sensors; 3) an approach that integrates crane motion data with known as-is environment data to detect hazards associated with lifting tasks; and 4) a strategy that effectively presents crane operator with crane motion information and warn them with potential hazards. A prototype system was developed and tested on a real crane in a field environment. The results show that the system is able to continuously and accurately monitor crane motion in real-time.

  • PDF

Movement Monitoring System for Marine Buoy (해상 브이용 움직임 감시 시스템)

  • Oh, Jin Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.311-317
    • /
    • 2014
  • Buoy has different motion characteristics depends on the sea weather situations. The motion characteristics has an impact on antenna, solar power generation system and etc. installed within a buoy. Therefore, it is important to analyse motion characteristics for management and analyse the buoy conditions. This paper's Buoy motion monitoring system uses gyro sensor to detect motions of a light buoy, and the measured data transfers to the PC on the shore using signal processing algorithm. The aim of this research is to develop monitoring and management mechanism of a buoy by applying motion monitoring system. In this paper, the operation characteristic of movement monitoring system is verified through experiment. Further, in this paper, it can apply such as real-time visibility into the status of the buoy or many ocean facility's motion estimation of the future.

Health monitoring of a bridge system using strong motion data

  • Mosalam, K.M.;Arici, Y.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.427-442
    • /
    • 2009
  • In this paper, the acceptability of system identification results for health monitoring of instrumented bridges is addressed. This is conducted by comparing the confidence intervals of identified modal parameters for a bridge in California, namely Truckee I80/Truckee river bridge, with the change of these parameters caused by several damage scenarios. A challenge to the accuracy of the identified modal parameters involves consequences regarding the damage detection and health monitoring, as some of the identified modal information is essentially not useable for acquiring a reliable damage diagnosis of the bridge system. Use of strong motion data has limitations that should not be ignored. The results and conclusions underline these limitations while presenting the opportunities offered by system identification using strong motion data for better understanding and monitoring the health of bridge systems.

Development of Reflected Type Photoplethysmorgraph (PPG) Sensor with Motion Artifacts Reduction (생명신호 측정용 반사형 광용적맥파 측정기의 움직임에 의한 신호왜곡 제거)

  • Han, Hyo-Nyoung;Lee, Yun-Joo;Kim, Jung-Sik;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • One of the most important issues in the wearable healthcare sensors is to minimize the motion artifacts in the vital signals for continuous monitoring. This paper presents a reflected type photoplethysmograph (PPG) sensor for monitoring heart rates at the artery of the wrist. Active noise cancellation algorithm was applied to compensate the distorted signals by motions with Least Mean Square (LMS) adaptive filter algorithms, using acceleration signals from a MEMS accelerometer. Experiments with a watch type PPG sensor were performed to validate the proposed algorithm during typical daily motions such as walking and running. The developed sensor is suitable for ubiquitous healthcare system and monitoring vital arterial signals during surgery.

The Establishment Plan of Strong-Motion Instrumentation of Dams for Monitoring of Seismic Behavior and Taking An Urgent Countermeasure (댐의 지진관측 및 내진대책 수립을 위한 지진계측시스템 구축 방안에 관한 연구)

  • Oh, Byung-Hyun;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1588-1595
    • /
    • 2005
  • In this study, the installation location of accelerometer and accelerograph for dam are investigated in the field to establish of emergency action against dam failure when earthquake occur and to guarantee the results of seismic stability of dams which are analysed with dynamic analysis method during 1999 to 2003 by KOWACO. By a comparative study concerning of domestic and foreign guidelines of seismic strong motion instrumentation for dams, "Guidelines of Seismic Strong-Motion Instrumentation Installation, Operation and Maintenance for Dams" is established to set up the standard of seismic strong-motion instrumentation for dam, are supervised by KOWACO There is some problems in taking a measure of stability of dams when earthquake event occur because the existing seismic strong motion instruments are operated independently. This make difficult to confirm the occurrence of seismic event. For that reason, in this study the plan of unified operation and maintenance system for strong-motion instrument for dams is designed. It will make possible real-time seismic monitoring, data transmission and receiving, giving warning for earthquake, and exchanging data with national seismic network.

  • PDF

Development of the Motion Monitoring System of a Ship (선박의 운동 운항환경 모니터링 시스템 개발)

  • Yoon, Hyeon-Kyu;Lee, Gyeong-Joong;Lee, Dong-Kon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • A ship in a sea cruises with rolling, pitching, heaving etc because of environmental causes such as wind and wave. Those motions make crews or passengers feel inconvenience and they feel acceleration changes. Therefore, if lateral and vertical accelerations can be measured at a specific position in a ship, it can be known how discomfortable crews or passengers are. The motion monitoring system developed in this paper consists of measuring and communicating part including five accelerometers and gyro and a main computer which acquires measuring data and calculates motion indices. MSI(Motion Sickness Incidence) and MII(Motion Induced Interrupt) are calculated in real time using measured acceleration and angular rate. The validity of the developed system was confirmed through the real ship test of Hannara which is the school ship of Korea Maritime University.

Current Developments of Biomedical Mobile Devices for Ubiquitous Healthcare (u-Healthcare를 위한 바이오 단말기의 개발 현황)

  • Lee, Tae-Soo;Hong, Joo-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2009
  • Biomedical mobile devices for ubiquitous healthcare consist of biomedical sensors and communication terminal. They have two types of configuration. One is the sensor-network type device using wired or wireless communication with intelligent sensors to acquire biomedical data. The other is the sensor embedded type device, where the data can be acquired directly by itself. There are many examples of sensor network type, such as, fall detection sensor, blood glucose sensor, and ECG sensors networked with commercial PDA phone and commercial phone terminal for ubiquitous healthcare. On the other hand, sensor embedded type mounts blood glucose sensor, accelerometer, and etc. on commercial phone. However, to enable true ubiquitous healthcare, motion sensing is essential, because users go around anywhere and their signals should be measured and monitored, when they are affected by the motion. Therefore, in this paper, two biomedical mobile devices with motion monitoring function were addressed. One is sensor-network type with motion monitoring function, which uses Zigbee communication to measure the ECG, PPG and acceleration. The other is sensor-embedded type with motion monitoring function, which also can measure the data and uses the built-in cellular phone network modem for remote connection. These devices are expected to be useful for ubiquitous healthcare in coming aged society in Korea.

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.