• Title/Summary/Keyword: Motion Modeling

Search Result 1,123, Processing Time 0.024 seconds

고분자 구동체를 이용한 손가락 외골격기구의 설계 및 동력학적 모델 개발 (Dynamic Modeling and Design of Finger Exoskeleton Using Polymer Actuator)

  • 정광훈;김윤정;윤벼리;왕혁식;송대석;김슬기;이계한;조재영;김동민;이수진
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.717-722
    • /
    • 2012
  • This paper presents the design and dynamic model of the finger exoskeleton actuated by Ionic Polymer Metal Composites (IPMC) to assist a tip pinch task. Although this exoskeleton will be developed to assist 3 degree-of-freedom motion of each finger, it has been currently made to perform the tip pinch task using 1 degree-of-freedom mechanism as the first step. The six layers of IPMC were stacked in parallel to increase the low actuation force of IPMC. In addition, the finger dummy was manufactured to evaluate the performance of the finger exoskeleton. The pinch task experiments, which were performed on the finger dummy with the developed exoskeleton, showed that the pinch force close to the desired level was obtained. Moreover, the dynamic model of the exoskeleton and finger dummy was developed in order to perform the various analyses for the improvement of the exoskeleton.

연속적인 이미지를 이용한 3차원 장면의 사실적인 복원 (Realistic 3D Scene Reconstruction from an Image Sequence)

  • 전희성
    • 정보처리학회논문지B
    • /
    • 제17B권3호
    • /
    • pp.183-188
    • /
    • 2010
  • 본 연구에서는 여러 이미지를 이용하여 사실적인 3차원 장면의 모델을 얻는 방법이 구현되었다. 이미지는 파라메터를 모르는 카메라를 이용하여 여러 위치에서 획득한 것을 사용하였다. 먼저 특징점 추출 및 추적 방법을 사용하여 모든 이미지에 대한 대응점들을 구하고 이 점들을 사용하여 사영복원을 구한다. 그 다음 사영 복원된 값에 여러 제약조건을 사용하여 유클리디언 복원을 하면 특징점들의 3차원 좌표값이 계산된다. 이 좌표값을 이용하여 삼각형 메쉬를 구한 후 이 면에 텍스처 맵핑을 하면 사실적인 복원이 완성된다. 전체 시스템은 C++언어로 구현하였으며, 사용자 인터페이스는 Qt 라이브러리로, 텍스처 맵핑과 모델 가시화 부분은 OpenGL 그래픽스 라이브러리로 구현하였다. 구현된 시스템의 효용성을 보이기 위해 모의 데이터와 실제 이미지 데이터를 이용하여 실험한 결과를 포함하였으며 만족할 만한 복원 결과를 얻을 수 있었다.

부분구조법에 의한 지반-구조물상호작용시스템의 지진응답 매개변수 연구 (Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method)

  • 박형기;조양희
    • 한국지진공학회논문집
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 1998
  • 동적 지반-구조물해석과정에는 수많은 불확실성 요소가 내재되어 있다. 이러한 요소는 입력운동의 정의, 지반-구조물시스템의 모델작성, 해석기법 등에 포함된다. 이 논문은 점탄성 층상지반상의 원자로건물의 지진응답에 대한 매개변수해석을 수행한 결과를 제시한 것이다. 많은 매개변수 중에 입력운동의 정의위치, 구조물의 묻힘정도, 상부토층의 두께와 지반의 강성을 선택하여 지진응답에 미치는 영향을 중점적으로 이 연구에서 다루었다. 해석방법은 진동수에 무관한 지반임피던스를 사용하는 부분구조법인 시간영역에서의 모드중첩법이다. 지반-구조물시스템의 모드감쇠값은 각 모드에 대해 변형에너지에 대한 소멸에너지의 비를 구하여 결정되었다. 이 연구결과로부터 부분구조법에 의한 지반-구조물상호작용해석법의 실용적 이용에 참고할 수 있는 지진응답에 미치는 각 파라메터의 민감도가 제시되었다.

  • PDF

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

인공지능 기술 랜드스케이프 : 기술 구조와 기업별 경쟁우위 (A Technology Landscape of Artificial Intelligence: Technological Structure and Firms' Competitive Advantages)

  • 이왕재;이학연
    • 기술혁신학회지
    • /
    • 제22권3호
    • /
    • pp.340-361
    • /
    • 2019
  • 본 연구는 특허 데이터를 활용하여 인공지능 기술의 구조를 파악하고 주요 글로벌 IT 기업들의 인공지능 기술역량을 분석한다. 2007년부터 2017년까지 미국 특허청에 등록된 2,589개의 인공지능 특허를 바탕으로 LDA 토픽모델링을 수행하여 인공지능 분야의 20개의 기술 토픽을 도출하였다. 인공지능 기술 분야 중 언어이해, 음성처리보다는 시각이해, 데이터분석, 동작제어, 그리고 기계학습 분야의 연구개발이 최근 활발한 것으로 나타났다. 또한 기업별 인공지능 기술 역량을 분석하여 인공지능 기술 분야별로 우수 역량을 보유한 기업을 도출하고, 기업별로 강점을 가지고 있는 세부 기술 분야를 도출하였다. 본 연구 결과는 인공지능 기업들의 기술기획 및 전략 수립에 유용하게 활용될 수 있을 것으로 기대된다.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W.;Jin, G.X.;Xu, C.S.;Yang, H.Q.;Liu, J.F.;Zhang, X.D.
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.113-131
    • /
    • 2022
  • A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.