• Title/Summary/Keyword: Motion Artifacts Reduction

Search Result 19, Processing Time 0.022 seconds

Interpolation Error Concealment Method of Motion Compensated Interpolated Frame for Motion Compensated Frame Rate Conversion (움직임 보상 프레임 율 변환 기법을 위한 움직임 보상 보간 프레임의 보간 오류 은닉 기법)

  • Lee, Jeong-Hun;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.927-928
    • /
    • 2008
  • In this paper, a interpolation error concealment algorithm of motion compensated interpolated frame for motion compensated frame rate conversion to reduce the block artifacts caused by failure of conventional motion estimation based on block matching algorithm is proposed. Experimental results show good performance of the proposed scheme with significant reduction of the block artifacts.

  • PDF

Frame Rate Up-Conversion Using the Motion Vector Correction based on Motion Vector Frequency of Neighboring blocks (주변 블록의 움직임 벡터 빈도수에 기반한 움직임 벡터 교정을 적용한 프레임 율 변환 기법)

  • Lee, Jeong-Hun;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.259-260
    • /
    • 2007
  • In this paper, a frame rate up-conversion algorithm using the motion vector frequency of neighboring blocks to reduce the block artifacts caused by failure of conventional motion estimation based on block matching algorithm is proposed. Experimental results show good performance of the proposed scheme with significant reduction of the erroneous motion vectors and block artifacts.

  • PDF

Development of Reflected Type Photoplethysmorgraph (PPG) Sensor with Motion Artifacts Reduction (생명신호 측정용 반사형 광용적맥파 측정기의 움직임에 의한 신호왜곡 제거)

  • Han, Hyo-Nyoung;Lee, Yun-Joo;Kim, Jung-Sik;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • One of the most important issues in the wearable healthcare sensors is to minimize the motion artifacts in the vital signals for continuous monitoring. This paper presents a reflected type photoplethysmograph (PPG) sensor for monitoring heart rates at the artery of the wrist. Active noise cancellation algorithm was applied to compensate the distorted signals by motions with Least Mean Square (LMS) adaptive filter algorithms, using acceleration signals from a MEMS accelerometer. Experiments with a watch type PPG sensor were performed to validate the proposed algorithm during typical daily motions such as walking and running. The developed sensor is suitable for ubiquitous healthcare system and monitoring vital arterial signals during surgery.

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.

Effectiveness of a Turbo Direction Change for Reduction of Motion Artifact in Magnetic Resonance Enterography

  • Choi, Kwan-Woo;Son, Soon-Yong;Jeong, Mi-Ae
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.421-424
    • /
    • 2016
  • The purpose of this study is to evaluate an effectiveness of switching turbo direction to improve motion artifacts of small bowels and aorta. From June to October 2015, 60 patients suspected of having Crohn's disease were enrolled. The MR Enterography scans were performed using same protocol other than the turbo direction: with the Z phase encoding (group A) and with Y phase encoding (group B). Qualitative analysis of each group was performed to evaluate the effectiveness of switching turbo direction from Z to Y. As a result, the 5-point Likert scale for paired observers were $2.33{\pm}0.88$ for group A and $3.80{\pm}0.85$ for group B on dynamic contrast enhanced coronal images. In conclusion, group B is proved to be superior to group A and can lessen the motion artifacts derived from phase shifts.

Noise Reduction of PPG Signal During Free Movements Using Adaptive SFLC(Scaled Fourier Linear Combiner) (적응 SFLC(Scaled Fourier Linear Combiner)를 이용한 활동 중의 PPG 신호의 잡음 감소)

  • Kim, Sung-Min;Cha, Eun-Jong;Kim, Deok-Won;Yoo, Jae-Ha;Kim, Dong-Yon;Kim, Soo-Chan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.138-141
    • /
    • 2006
  • Blood flow is one of vital signals related to human physiological information. Photoplethysmograph (PPG) has been used to measure indirectly heart rate, blood oxygen saturation ($SpO_2$), and so on. Because PPG signal is weak and sensitive to motion artifacts, it is very important to continuously obtain stable PPG signal during free movement. In this study, we applied the scaled Fourier linear combiner (SFLC) using both the adaptive filter and FLC to remove effectively the motion artifacts as well as background noise in the real time without additional signal correlated with motion from a accelerometer. The proposed method would be useful to reduce the movement and background noise which are not synchronized with heart rate.

The Motion Artifact Reduction from the PPG based on EWMA (지수가중 이동평균 기반의 PPG 신호 동잡음 제거)

  • Lee, Jun-Yeon
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.183-190
    • /
    • 2013
  • The Photoplethysmogram is a similar periodic signal that synchrinized to a heartbeat. In this paper, we propose a exponential weight moving average filter that use similarity of Photoplethysmogram. This filtering method has the average value of each samples through separating the cycle of PPG signal. If there are some motion artifacts in continuous PPG signal, disjoin the signal based on cycle. And then, we made these signals to have same cycle by coordinating the number of sample. After arrange these cycles in 2 dimension, we put the average value of each samples from starting till now. So, we can eliminate the motion artifacts without damaged PPG signal.

The Motion Artifact Reduction using Periodic Moving Average Filter (주기적 이동평균필터를 이용한 동잡음 제거)

  • Lee, Jun-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.75-82
    • /
    • 2012
  • The Photoplethysmogram is a similar periodic signal that synchronized to a heartbeat. In this paper, we propose a periodic moving average filter that use similarity of Photoplethysmogram. This filtering method has the average value of each samples through separating the cycle of PPG signal. If there are some motion artifacts in continuous PPG signal, disjoin the signal based on cycle. And then, we made these signals to have same cycle by coordinating the number of sample. After arrange these cycles in 2 dimension, we put the average value of each samples from starting till now. So, we can eliminate the motion artifacts without damaged PPG signal.

Motion Artifacts reduction from the PPG based on the Improved PMAF for the U-Healthcare System (U-헬스케어 시스템을 위한 개선된 PMAF 기반의 PPG 신호의 동잡음 제거)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Jun, Jae-Chul;Lee, Gun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.28-34
    • /
    • 2008
  • The real-time biomedical signal monitoring is a very important factor to realize the ubiquitous healthcare environment. Most of these devices for monitoring the biomedical information get the PPG signal from the user, and these signals are utilized for monitoring their health. It is inconvenient to get the PPG because the user should wear the finger probe with his finger for measuring the PPG signal. Also it is difficult to get the PPG correctly, because of the motion artifacts from the movement of the user. In this paper, we develop the watch type biomedical signal monitoring system without the finger probe, and propose the new algorithm for reducing the motion artifacts from the PPG signal. We designed the system which gets the PPG from the sensor on the wrist band strip. As compared with the finger probe type, this system we proposed is more affected by the motion artifacts. So to filter this motion artifacts, we propose the new method; the improved PMAF(Periodic Moving Average Filter) method.

Quasi-breath-hold (QBH) Biofeedback in Gated 3D Thoracic MRI: Feasibility Study (게이트 흉부자기 공명 영상법과 함께 사용할 수 있는 의사호흡정지(QBH) 바이오 피드백)

  • Kim, Taeho;Pooley, Robert;Lee, Danny;Keall, Paul;Lee, Rena;Kim, Siyong
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • The aim of the study is to test a hypothesis that quasi-breath-hold (QBH) biofeedback improves the residual respiratory motion management in gated 3D thoracic MR imaging, reducing respiratory motion artifacts with insignificant acquisition time alteration. To test the hypothesis five healthy human subjects underwent two gated MR imaging studies based on a T2 weighted SPACE MR pulse sequence using a respiratory navigator of a 3T Siemens MRI: one under free breathing and the other under QBH biofeedback breathing. The QBH biofeedback system utilized the external marker position on the abdomen obtained with an RPM system (Real-time Position Management, Varian) to audio-visually guide a human subject for 2s breath-hold at 90% exhalation position in each respiratory cycle. The improvement in the upper liver breath-hold motion reproducibility within the gating window using the QBH biofeedback system has been assessed for a group of volunteers. We assessed the residual respiratory motion management within the gating window and respiratory motion artifacts in 3D thoracic MRI both with/without QBH biofeedback. In addition, the RMSE (root mean square error) of abdominal displacement has been investigated. The QBH biofeedback reduced the residual upper liver motion within the gating window during MR acquisitions (~6 minutes) compared to that for free breathing, resulting in the reduction of respiratory motion artifacts in lung and liver of gated 3D thoracic MR images. The abdominal motion reduction in the gated window was consistent with the residual motion reduction of the diaphragm with QBH biofeedback. Consequently, average RMSE (root mean square error) of abdominal displacement obtained from the RPM has been also reduced from 2.0 mm of free breathing to 0.7 mm of QBH biofeedback breathing over the entire cycle (67% reduction, p-value=0.02) and from 1.7 mm of free breathing to 0.7 mm of QBH biofeedback breathing in the gated window (58% reduction, p-value=0.14). The average baseline drift obtained using a linear fit was reduced from 5.5 mm/min with free breathing to 0.6 mm/min (89% reduction, p-value=0.017) with QBH biofeedback. The study demonstrated that the QBH biofeedback improved the upper liver breath-hold motion reproducibility during the gated 3D thoracic MR imaging. This system can provide clinically applicable motion management of the internal anatomy for gated medical imaging as well as gated radiotherapy.