• Title/Summary/Keyword: Motion Acquisition

Search Result 182, Processing Time 0.023 seconds

RGB-Depth Camera for Dynamic Measurement of Liquid Sloshing (RGB-Depth 카메라를 활용한 유체 표면의 거동 계측분석)

  • Kim, Junhee;Yoo, Sae-Woung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • In this paper, a low-cost dynamic measurement system using the RGB-depth camera, Microsoft $Kinect^{(R)}$ v2, is proposed for measuring time-varying free surface motion of liquid dampers used in building vibration mitigation. Various experimental studies are conducted consecutively: performance evaluation and validation of the $Kinect^{(R)}$ v2, real-time monitoring using the $Kinect^{(R)}$ v2 SDK(software development kits), point cloud acquisition of liquid free surface in the 3D space, comparison with the existing video sensing technology. Utilizing the proposed $Kinect^{(R)}$ v2-based measurement system in this study, dynamic behavior of liquid in a laboratory-scaled small tank under a wide frequency range of input excitation is experimentally analyzed.

Ultrashort Echo Time MRI (UTE-MRI) Quantifications of Cortical Bone Varied Significantly at Body Temperature Compared with Room Temperature

  • Jerban, Saeed;Szeverenyi, Nikolaus;Ma, Yajun;Guo, Tan;Namiranian, Behnam;To, Sarah;Jang, Hyungseok;Chang, Eric Y.;Du, Jiang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • Purpose: To investigate the temperature-based differences of cortical bone ultrashort echo time MRI (UTE-MRI) biomarkers between body and room temperatures. Investigations of ex vivo UTE-MRI techniques were performed mostly at room temperature however, it is noted that the MRI properties of cortical bone may differ in vivo due to the higher temperature which exists as a condition in the live body. Materials and Methods: Cortical bone specimens from fourteen donors ($63{\pm}21$ years old, 6 females and 8 males) were scanned on a 3T clinical scanner at body and room temperatures to perform T1, $T2^*$, inversion recovery UTE (IR-UTE) $T2^*$ measurements, and two-pool magnetization transfer (MT) modeling. Results: Single-component $T2^*$, $IR-T2^*$, short and long component $T2^*s$ from bi-component analysis, and T1 showed significantly higher values while the noted macromolecular fraction (MMF) from MT modeling showed significantly lower values at body temperature, as compared with room temperature. However, it is noted that the short component fraction (Frac1) showed higher values at body temperature. Conclusion: This study highlights the need for careful consideration of the temperature effects on MRI measurements, before extending a conclusion from ex vivo studies on cortical bone specimens to clinical in vivo studies. It is noted that the increased relaxation times at higher temperature was most likely due to an increased molecular motion. The T1 increase for the studied human bone specimens was noted as being significantly higher than the previously reported values for bovine cortical bone. The prevailing discipline notes that the increased relaxation times of the bound water likely resulted in a lower signal loss during data acquisition, which led to the incidence of a higher Frac1 at body temperature.

The feasibility evaluation of Respiratory Gated radiation therapy simulation according to the Respiratory Training with lung cancer (폐암 환자의 호흡훈련에 의한 호흡동조 방사선치료계획의 유용성 평가)

  • Hong, mi ran;Kim, cheol jong;Park, soo yeon;Choi, jae won;Pyo, hong ryeol
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.149-159
    • /
    • 2016
  • Purpose : To evaluate the usefulness of the breathing exercise,we analyzed the change in the RPM signal and the diaphragm imagebefore 4D respiratory gated radiation therapy planning of lung cancer patients. Materials and Methods : The breathing training was enforced on 11 patients getting the 4D respiratory gated radiation therapy from April, 2016 until August. At the same time, RPM signal and diaphragm image was obtained respiration training total three steps in step 1 signal acquisition of free-breathing state, 2 steps respiratory signal acquisition through the guide of the respiratory signal, 3 steps, won the regular respiration signal to the description and repeat training. And then, acquired the minimum value, maximum value, average value, and a standard deviation of the inspiration and expiration in RPM signal and diaphragm image in each steps. Were normalized by the value of the step 1, to convert the 2,3 steps to the other distribution ratio (%), by evaluating the change in the interior of the respiratory motion of the patient, it was evaluated breathing exercise usefulness of each patient. Results : The mean value and the standard deviation of each step were obtained with the procedure 1 of the RPM signal and the diaphragm amplitude as a 100% reference. In the RPM signal, the amplitudes and standard deviations of four patients (36.4%, eleven) decreased by 18.1%, 27.6% on average in 3 steps, and 2 patients (18.2%, 11 people) had standard deviation, It decreased by an average of 36.5%. Meanwhile, the other four patients (36.4%, eleven) decreased by an average of only amplitude 13.1%. In Step 3, the amplitude of the diaphragm image decreased by 30% on average of 9 patients (81.8%, 11 people), and the average of 2 patients (18.2%, 11 people) increased by 7.3%. However, the amplitudes of RPM signals and diaphragm image in 3steps were reduced by 52.6% and 42.1% on average from all patients, respectively, compared to the 2 steps. Relationship between RPM signal and diaphragm image amplitude difference was consistent with patterns of movement 1, 2 and 3steps, respectively, except for No. 2 No. 10 patients. Conclusion : It is possible to induce an optimized respiratory cycle when respiratory training is done. By conducting respiratory training before treatment, it was possible to expect the effect of predicting the movement of the lung which could control the patient's respiration. Ultimately, it can be said that breathing exercises are useful because it is possible to minimize the systematic error of radiotherapy, expect more accurate treatment. In this study, it is limited to research analyzed based on data on respiratory training before treatment, and it will be necessary to verify with the actual CT plan and the data acquired during treatment in the future.

  • PDF

The Evaluation of Usefulness of Pixelated Breast-Specific Gamma Imaging in Thyroid scan (Pixelated Breast-Specific Gamma Imaging(BSGI) 감마 카메라를 이용한 갑상선 검사의 유용성 평가)

  • Jung, Eun-Mi;Seong, Ji-Hye;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.90-93
    • /
    • 2011
  • Purpose: A Pixelated BSGI gamma camera has features to enhance resolution and sensitivity and minimize the distance between detector and organs by narrow FOV. Therefore, it is known as useful device to examine small organs such as thyroid, parathyroid and gall bladder. In general, when we would like to enlarge the size of images and obtain high resolution images by gamma camera in nuclear medicine study, we use pinhole collimator. The purpose of this study is to evaluate the usefulness of Pixelated BSGI gamma camera and to compare to it using pinhole collimator in thyroid scan which is a study of typical small organs. Materials and methods: (1) The evaluation of sensitivity and spatial resolution: We measured sensitivity and spatial resolution of Pixelated BSGI with LEHR collimator and Infinia gamma camera with pinhole collimator. The sensitivity was measured by point source sensitivity test recommended by IAEA. We acquired images considering dead time in BSGI gamma camera for 100 seconds and used $^{99m}TcO4-\;400{\mu}Ci$ line source. (2) The evaluation of thyroid phantom: The thyroid phantom was filled with $^{99m}TcO4-$. After set 300 sec or 100 kcts stop conditions, we acquired images from both pixelated BSGI gamma camera and Infinia gamma camera with LEHR collimator. And we performed all thyroid studies in the same way as current AMC's procedure. Results: (1) the result of sensitivity: As a result, the sensitivity and spatial resolution of pixelated BSGI gamma camera were better than Infinia's. The sensitivities of pixelated BSGI and Infinia gamma camera were $290cps/{\mu}Ci$ and $350cps/{\mu}Ci$ respectively. So, the sensitivity of pixelated BSGI was 1.2 times higher than Infinia's (2) the result of thyroid phantom: Consequently, we confirmed that images of Pixelated BSGI gamma camera were more distinguishable between hot and cold spot compared with Infinia gamma camera. Conclusion: A pixelated BSGI gamma camera is able to shorten the acquisition time. Furthermore, the patients are exposed to radiation less than before by reducing amount of radiopharmaceutical doses. Shortening scan time makes images better by minimizing patient's breath and motion. And also, the distance between organ and detector is minimized because detector of pixelated BSGI gamma camera is small and possible to rotate. When patient cannot move at all, it is useful since device is feasible to move itself. However, although a pixelated BSGI gamma camera has these advantages, the effect of dead time occurs over 2000 cts/s since it was produced only for breast scan. So, there were low concentrations in organ. Therefore, we should consider that it needs to take tests to adjust acquisition time and amount of radiopharmaceutical doses in thyroid scan case with a pixelated BSGI gamma camera.

  • PDF

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

Quality Assurance of Multileaf Collimator Using Electronic Portal Imaging (전자포탈영상을 이용한 다엽시준기의 정도관리)

  • ;Jason W Sohn
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.151-160
    • /
    • 2003
  • The application of more complex radiotherapy techniques using multileaf collimation (MLC), such as 3D conformal radiation therapy and intensity-modulated radiation therapy (IMRT), has increased the significance of verifying leaf position and motion. Due to thier reliability and empirical robustness, quality assurance (QA) of MLC. However easy use and the ability to provide digital data of electronic portal imaging devices (EPIDs) have attracted attention to portal films as an alternatives to films for routine qualify assurance, despite concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In this study, we developed method for daily QA of MLC using electronic portal images (EPIs). EPID availability for routine QA was verified by comparing of the portal films, which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed two-test patterns of dynamic MLC were applied for image acquisition. Quantitative off-line analysis using an edge detection algorithm enhanced the verification procedure as well as on-line qualitative visual assessment. In conclusion, the availability of EPI was enough for daily QA of MLC leaf position with the accuracy of portal films.

  • PDF

Development of Exercise Analysis System Using Bioelectric Abdominal Signal (복부생체전기신호를 이용한 운동 분석 시스템 개발)

  • Gang, Gyeong Woo;Min, Chul Hong;Kim, Tae Seon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.183-190
    • /
    • 2012
  • Conventional physical activity monitoring systems, which use accelerometers, global positioning system (GPS), heartbeats, or body temperature information, showed limited performances due to their own restrictions on measurement environment and measurable activity types. To overcome these limitations, we developed a portable exercise analysis system that can analyze aerobic exercises as well as isotonic exercises. For bioelectric signal acquisition during exercise, waist belt with two body contact electrodes was used. For exercise analysis, the measured signals were firstly divided into two signal groups with different frequency ranges which can represent respiration related signal and muscular motion related signal, respectively. After then, power values, differential of power values, and median frequency values were selected for feature values. Selected features were used as inputs of support vector machine (SVM) to classify the exercise types. For verification of statistical significance, ANOVA and multiple comparison test were performed. The experimental results showed 100% accuracy for classification of aerobic exercise and isotonic resistance exercise. Also, classification of aerobic exercise, isotonic resistance exercise, and hybrid types of exercise revealed 92.7% of accuracy.

A Study on the Aesthetic Characteristics of the digital silhouette animation, (미셀 오슬로의 <밤의 이야기>를 통해 본 디지털 실루엣 애니메이션의 미학적 특성 연구)

  • Moon, Jae-Cheol;Kim, YoungOk
    • Cartoon and Animation Studies
    • /
    • s.32
    • /
    • pp.1-21
    • /
    • 2013
  • Silhouette Animation has been recognized as a genre of animation since the very beginning of the animation history, and also Its segmental movement and Aesthetic expression has led a variety of semantic interpretations. Especially the French animation director, Michel Ocelot, recently integrated 3-dimensional digital to the silhouettes animation, and it extended the possibility of the silhouettes animation in many aspects. In his latest animation feature, , he showed how he made changes in 3-dimension by creating and evolving his own way and style of silhouette animation. Although mainstream digital animations preferably to show realistic images and motion, Michel Ocelot used very selective movement, subjective digital colors and extended space which couldn't be expressed in the way of creating traditional style of silhouette animation. This alternative slow movement and the unique aesthetics in 3-dimension emphasize the unconscious elements of color, composition, patterns, and it provides digitally enhanced images and pictorial impression. In addition, the acquisition of digital three-dimensional use of space made possible to provides the wider formative imagination to the audience. In this paper, we analyzed aesthetic characteristics of the digital silhouette animation, (2011), specially focusing on the aspects of Movement, Image, Space, which could not be found in the traditional silhouette animation. It is significant to obtain diversity of the future digital animation and its positive development. In addition, this provides opportunity to explore Michel Ocelot's new experiments and animation philosophy.

A Study on the Estimation of Regional Myocardial Blood Flow in Experimental Canine Model with Coronary Thrombosis using Rb-82 Dynamic Myocardial Positron Emission Tomography (실험 개에서 Rb-82 심근 Dynamic PET 영상을 이용한 국소 심근 혈류 예측의 기본 모델 연구)

  • Kwark, Cheol-Eun;Lee, Dong-Soo;Kang, Keon-Wook;Hwang, Eun-Kyung;Jeong, Jae-Min;Chang, Kee-Hyun;Chung, June-Key;Lee, Myung-Chul;Seo, Joung-Don;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.48-53
    • /
    • 1995
  • This study investigates a simple mathematical model for the quantitative estimation of regional myocardial blood flow in experimental canine coronary artery thrombosis using Rb-82 dynamic myocardial positron emission tomography. The coronary thrombosis was induced using the new catheter technique by narrowing the lumen of coronary vessel gradually, which finally led to partial obstruction of coronary artery. Ten Rb-82 dynamic myocardial PET scans were performed sequentially for each experiment using our 5, 10 and 20 second acquisition protocol, respectively, and three regions of interest were drawn on the transaxial slices, one on left ventricular chamber for input function and the other two on normal and decreased perfusion segments for the flow estimation in those regions. Single compartment model has been applied to the measured sets of regional PET data, and the rate constants of influx to myocardial tissue were calculated for regional myocardial flow estimates with the three parameter fits of raw data by the Levenberg-Marquardt method. The results showed that, (1) single compartment model suggested by Kety-Schmidt could be used for the simple estimation of regional myocardial blood flow, (2) the calculated regional myocardial blood flow estimates were dependent on the selection of input function, which reflected partial volume effect and left ventricular wall motion, and (3) mathematically fitted input and tissue time activity curves were more suitable than the direct application of the measured data in terms of convergence.

  • PDF

The Noise Performance of Diffusion Tensor Image with Different Gradient Schemes (확산 텐서 영상에서 확산 경사자장의 방향수에 따른 잡음 분석)

  • Lee Young-Joo;Chang Yongmin;Kim Yong-Sun
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.439-445
    • /
    • 2004
  • Diffusion tensor image(DTI) exploits the random diffusional motion of water molecules. This method is useful for the characterization of the architecture of tissues. In some tissues, such as muscle or cerebral white matter, cellular arrangement shows a strongly preferred direction of water diffusion, i.e., the diffusion is anisotropic. The degree of anisotropy is often represented using diffusion anisotropy indices (relative anisotropy(RA), fractional anisotropy(FA), volume ratio(VR)). In this study, FA images were obtained using different gradient schemes(N=6, 11, 23, 35. 47). Mean values and the standard deviations of FA were then measured at several anatomic locations for each scheme. The results showed that both mean values and the standard deviations of FA were decreased as the number of gradient directions were increased. Also, the standard error of ADC measurement decreased as the number of diffusion gradient directions increased. In conclusion, different gradient schemes showed a significantly different noise performance and the schem with more gradient directions clearly improved the quality of the FA images. But considering acquisition time of image and standard deviation of FA, 23 gradient directions is clinically optimal.