• Title/Summary/Keyword: Morphometric equation

Search Result 5, Processing Time 0.023 seconds

Morphometric Characteristics and Correlation Analysis with Rainfall-runoff in the Han River Basin (한강 유역의 형태학적 특성과 강우-유출의 상관분석)

  • Lee, Ji Haeng;Lee, Woong Hee;Choi, Heung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.237-247
    • /
    • 2018
  • The basin characteristics reflect the attributes of geomorphological pattern of basin and stream networks affect the rainfall-runoff. In order to analyze the relationship between the basin runoff and stream morphometric characteristics, the morphometric characteristics were investigated for 27 water-level observation stations on 19 rivers in the Han River basin using Arc-map. The morphometric characteristics were divided into linear, areal and relief aspects for calculation while the annual mean runoff ratio as a basin response by rainfall was estimated using the measured precipitation and discharge to analyze the rainfall-runoff characteristics. The correlation among the morphometric parameters were schematized to analyze the correlations among them. The multiple regression equation for rainfall-runoff ratio was provided with morphometric parameters of stream length ratio, form factor ratio, shape factor, stream area ratio, and relief ratio and the coefficient of determination was 0.691. The RMSE and MAPE between the measured and the estimated annual runoff rates were found as 0.09, 11.61% respectively, the suggested regression equation showed good estimation.

Morphometrical Changes on Korean Rose Bitterling, Rhodeus uyekii, in Early Growth Period

  • Goo, In Bon;Lim, Sang Gu;Han, Hyung Kyun;Park, In-Seok
    • Development and Reproduction
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • We investigated the process of yolk absorption in Korean rose bitterling, Rhodeus uyekii, and determined the changes in its morphometric characteristics. The R. uyekii from 1 days post hatching (DPH) to 21 DPH, the eye diameter (ED) was 5.4 at 5 DPH. Thereafter, the ED/total length (TL) ratio increased to 10.7 at 21 DPH (p<0.05). The yolk length (YL) decreased from 95.4 to 1.1 by 21 DPH, and this rate of decrease was greater than that for any other dimension (p<0.05). 12 morphometric dimensions/TL for the R. uyekii were measured at each sampling day from 21 DPH to 170 DPH. At just hatching, the average TL and BW were $6.1{\pm}0.09mm$ and $4.9{\pm}0.07mg$, respectively. At 53 DPH, the average TL was $12.9{\pm}0.28mm$ and the average BW was $14.7{\pm}0.72mg$; the total length growth equation was $TL=5.507e^{0.038t}$ ($R^2=0.916$). Further, the body weight growth equation was $BW=3.3647e^{0.0296t}$ ($R^2=0.9354$). The dimensions with regard to body depth showed the greatest growth rates in the external characteristics of the fish (p<0.05). The patterns of the morphometric characteristics measured in this study can be classified in three ways. The patterns were shown to be increased (y=0.0992x+12.07, $R^2=0.8333$), decreased (y=-0.0569x+42.029, $R^2=0.8395$) or maintained (y=0.005x+18.263, $R^2=0.3678$) from 21 DPH to 170. These results will provide useful indices for the successful rearing of the R. uyekii.

Estimating the Individual Dry Weight of Sheet Form Macroalgae for Laboratory Studies (실험실 연구를 위한 엽상형 해조류의 생체량 추정 방법)

  • Kim, Sangil;Youn, Seok-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.244-250
    • /
    • 2019
  • We investigated the relationship between morphological characteristics and individual dry weight to develop a method for estimating the individual dry weight of sheet form macroalgae: Ulva australis, Ulva linza, Pachymeniopsis lanceolata, and Pyropia yezoensis. In Total, 319 thalli of various sizes were collected at six sites from February 2017 to December 2018. An interspecific allometric exponent of 0.28 was found for length-biomass allometry in four sheet form macroalgae, corresponding to a 1/4-power law for primary producers. The relationships between surface area and individual dry weight, as well as between individual fresh weight and individual dry weight, were found to fit significantly using linear regression equations. This explained 94-99 % of individual dry weight, indicating that surface area and individual fresh weight can be used to accurately estimate individual dry weight. We propose the use of this method when experimental processes do not allow individual dry weight to be measured directly, so researchers can save both time and expense.

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

A Geomorphological Classification System to Chatacterize Ecological Processes over the Landscape (생태환경 특성 파악을 위한 지형분류기법의 개발)

  • Park Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.495-513
    • /
    • 2004
  • The shape of land surface work as a cradle for various environmental processes and human activities. As spatially distributed process modelings become increasing important in current research communities, a classification system that delineates land surface into characteristic geomorphological units is a pre-requisite for sustainable land use planning and management. Existing classification systems are either morphometric or generic, which have limitations to characterize continuous ecological processes over the landscape. A new classification system was developed to delineate the land surface into different geomorphological units from Digital Elevation Models(DEMs). This model assumes that there are pedo-geomorphological units in which distinct sets of hydrological, pedological, and consequent ecological processes occur. The classification system first divides the whole landsurface into eight soil-landscape units. Possible energy and material nows over the land surface were interpreted using a continuity equation of mass flow along the hillslope, and subsequently implemented in terrain analysis procedures. The developed models were tested at a 12$\textrm{km}^2$ area in Yangpyeong-gun, Kyeongi-do, Korea. The method proposed effectively delineates land surface into distinct pedo-geomorphological units, which identify the geomorphological characteristics over a large area at a low cost. The delineated landscape units mal provide a basic information for natural resource survey and environmental modeling practices.