Heterogeneity in cancer is the major obstacle for precision medicine and has become a critical issue in the field of a cancer diagnosis. Many attempts were made to disentangle the complexity by molecular classification. However, multi-dimensional information from dynamic responses of cancer poses fundamental limitations on biomolecular marker-based conventional approaches. Cell morphology, which reflects the physiological state of the cell, can be used to track the temporal behavior of cancer cells conveniently. Here, we first present a hybrid learning-based platform that extracts cell morphology in a time-dependent manner using a deep convolutional neural network to incorporate multivariate data. Feature selection from more than 200 morphological features is conducted, which filters out less significant variables to enhance interpretation. Our platform then performs unsupervised clustering to unveil dynamic behavior patterns hidden from a high-dimensional dataset. As a result, we visualize morphology state-space by two-dimensional embedding as well as representative morphology clusters and trajectories. This cell morphology profiling strategy by hybrid learning enables simplification of the heterogeneous population of cancer.
The microarchitecture of trabecular bone plays a significant role in mechanical strength due to its load-bearing capability. However, the complexity of trabecular microarchitecture hinders the evaluation of its morphological characteristics. We therefore propose a new classification method based on static multiscale theory and dynamic finite element method (FEM) analysis to visualize a three-dimensional (3D) trabecular network for investigating the influence of trabecular microarchitecture on load-bearing capability. This method is applied to human vertebral trabecular bone images obtained by micro-computed tomography (micro-CT) through which primary trabecular bone is successfully visualized and extracted from a highly complicated microarchitecture. The morphological features were then analyzed by viewing the percolation of load pathways in the primary trabecular bone by using the stress wave propagation method analyzed under impact loading. We demonstrate that the present method is effective for describing the morphology of trabecular bone and has the potential for morphometric measurement applications.
Purpose: The aim of this study was to evaluate the root canal morphology of mesial roots of mandibular first molars. Materials and Methods: Forty extracted mandibular first molars were used in this study. The morphological examination of root canals was conducted in accordance with the Vertucci classification using micro-computed tomography (micro-CT). Any aberrant root canal configurations not included in the Vertucci classification were recorded, and their frequency was established using descriptive statistics. Intra-observer reliability was assessed using the Wilcoxon signed-rank test, while inter-observer reliability was assessed using the Cohen kappa test. Significance was evaluated at the P<0.05 level. Results: The mesial roots of mandibular first molars had canal configurations of type I (15%), type II (7.5%), type III (25%), type IV (10%), type V (2.5%), type VI (7.5%), and type VII (7.5%). The images showed 10 (25%) additional configuration types that were not included in the Vertucci classification. These types were 1-3-2-3, 1-2-3-2-3, 2-3-1, 2-3, 1-2-3-1, 2-1-2-3, 3-2-1, 1-2-3-1, 2-3-2-3, and 1-2-1-2-1. The intra-observer differences were not statistically significant(P>0.05) and the kappa value for inter-observer agreement was found to be 0.957. Conclusion: Frequent variations were detected in mesial roots of mandibular first molars. Clinicians should take into consideration the complex structure of the root canal morphology before commencing root canal treatment procedures to prevent iatrogenic complications. Micro-CT was a highly suitable method to provide accurate 3-dimensional visualizations of root canal morphology.
Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
Asian Pacific Journal of Cancer Prevention
/
제17권2호
/
pp.835-838
/
2016
Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.
In this Paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. The proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.6 respectively.
Author has studied and reported on taxonomy of Korean sedges, using gross morphology, anatomy and epidermal patterns of the leaf blades(1969, 1971, 1973, 1974). This paper is the 6th report of epidermal patterns of leaf blade on sedges and includes 5 genera, Eriophorum, Fuirena, Kobresia, Rhynchospora and Scirpus. The author proposed to find epidermal patterns of leaf blades as an important taxonomic characteristic of sedges classification. The result of this study, the elements of leaf epidermis, subsidal cells, silica body, cell wall of long cell, prickles, and arrangement of the elements are considered to be significant characteristics for the identification and classification of sedge.
본 연구는 정상 안모이면서 정상교합자인 37명을 대상으로 이마 형태를 분류한 후 분류 기준값을 찾아보았고 이마 분류에 따른 상악 전치의 위치차이를 연구하였다. 또 이마형태에 영향을 주는 인자들과 상악 전치의 위치와의 상관관계를 조사하여 다음과 같은 결과를 얻었다. 1. 이마의 형태는 angular, round, straight, concave 형태로 구분 가능하다. 2. 이마의 형태를 분류할 수 있는 특정 기준 값은 존재하지 않았지만 S value와 이마길이(Tri-Gla)를 이용하여 이마형태의 분류 가능성이 존재하였다. 3. 이마의 형태에 따른 상악 전치의 위치는 차이는 존재하지 않았다. 4. 이마 기울기와 Andrews 분석값은 유의한 음의 상관관계를 갖는다. 즉 이마 기울기가 커질수록 상악 전치는 후방 위치하게 되며 다음과 같은 공식 Andrew analysis = -0.39*Forehead inclination으로 표현할 수 있다.
Conventionally, identification and classification methods of natural products include the morphological survey and assay of chemical disposition, sing these methods, however, is not satisfying for the precise identification of natural products because they are often valiable in the compositions and morphology To standardize the natural products identification and classification, genomic DNA analysis such as RAPD, RFLP and Amp-FLP can be adopted for this purpose. In this study, various ginsengs and bear gall bladder were tested for the development of genetic identification and classification method. Varieties of ginsengs such as, P. ginseng, P. quinquefolium, P. japonicus and P. notoginseng, were genetically analyzed by RAPD. Also, DNA isolated from Bear blood and gall bladder, Ursus thibetanus, Ursus americanus and Ursus arctos, were analyzed by the same method. The results demonstrated that the identification and classification of bear gall bladder and various ginsengs were possible by RAPD analysis. Therefore, this method was thought to be used as a additional method for the identification and classification of other natural products.
In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classification of WBC. A total of 136,164 blood image samples (224x224) were grouped for image segmentation, training, training verification, and final test performance analysis. Image segmentation using super-pixels have different number of images for each classes, so weighted average was applied and therefore image segmentation error was low at 7.23%. Using the training data-set for training 50 times, and using soft-max classifier, TPR average of 80.3% for the training set of 8,827 images was achieved. Based on this, using verification data-set of 21,437 images, 14-Diff classification TPR average of normal WBCs were at 93.4% and TPR average of abnormal WBCs were at 83.3%. The result and methodology of this research demonstrates the usefulness of artificial intelligence technology in the blood cell image classification field. WBC-ResNet-152 based morphology approach is shown to be meaningful and worthwhile method. And based on stored medical data, in-depth diagnosis and early detection of curable diseases is expected to improve the quality of treatment.
이 연구는 식물학의 학문분류 체계와 문헌분류 체계를 비교 분석함으로써 식물학의 분류특성과 문제점을 분석하고, 이를 토대로 KDC 식물학의 분류체계를 개선할 수 있는 방안을 제시하고자 시도되었다. 이 연구결과를 요약하면 아래와 같다. 첫째, 식물학의 학문분류는 주로 식물의 연구대상에 따라 식물 형태학, 식물 생리학, 식물 생태학, 식물 계통학, 식물 유전학, 식물 진화학 등으로 구분하고 있다. 둘째, 식물의 분류는 식물 계통학이라는 하위 분과학문에서 다루고 있으며, Engler 체계 등이 일반화되어 있다. 셋째, 식물학의 문헌분류 체계는 대부분 식물학의 분과학문 위주가 아니라 식물의 분류 위주로 구성되어 있다. 이때 KDC, NDC, UDC, CC에서는 식물분류를 식물의 발달과정 즉, 진화순서에 의해 하등식물에서 고등식물로 배열되어 있는 Engler 체계를 적용하고 있으며, DDC와 LCC는 현존하는 식물에 더 중점을 두고, 고등식물에서 하등식물로 배열되어 있는 Bentham & Hooker 체계와 유사성이 있다. 넷째, KDC 식물학에서 있어서는 DDC나 CC와 같이 일반 식물학에서 다루고 있는 식물의 구조나 속성 등을 482-489에 나열되어 있는 모든 식물에 공통적으로 적용하여 세분할 수 있도록 구조화 하는 것이 바람직할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.