• Title/Summary/Keyword: Morphological model

Search Result 484, Processing Time 0.023 seconds

Driver face localization using morphological analysis and multi-layer preceptron as a skin-color model (형태분석과 피부색모델을 다층 퍼셉트론으로 사용한 운전자 얼굴추출 기법)

  • Lee, Jong-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.249-254
    • /
    • 2013
  • In the area of computer vision, face recognition is being intensively researched. It is generally known that before a face is recognized it must be localized. Skin-color information is an important feature to segment skin-color regions. To extract skin-color regions the skin-color model based on multi-layer perceptron has been proposed. Extracted regions are analyzed to emphasize ellipsoidal regions. The results from this study show good accuracy for our vehicle driver face detection system.

Modeling of PhaseTransformation Kinetics in the CGHAZ Considering Prior Austenite Grain Size (오스테나이트 결정립 크기를 고려한 CGHAZ에서의 상변태 거동 예측)

  • 이찬우;엄상호;이경종;이창희
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.55-62
    • /
    • 2000
  • A metallurgical model for the phase transformation kinetics at Coarsened Grain Heat Affected Zone(CGHAZ) on the basis of Johnson-Mehl-Avrami equation(JMA equation) was proposed. In this model, the effect of prior austenite grain size on the transformation and the morphological changes of ferrite were considered. Isothermal dilatometer tests were performed to determine the effect of prior austenite grain size (AGS) on the austenite decomposition to ferrite and pearlite in a plain carbon steel. By comparing the calculated volume fraction with measured data, the reliability of the developed model was discussed.

  • PDF

A Study on the Urban Heat Simulation Model Incorporating the Climate Changes (기후변화가 반영된 도시 열환경 시뮬레이션 모델의 연구)

  • Kang, Jonghwa;Kim, Wansoo;Yun, Jeongim;Lee, Joosung;Kim, Seogcheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.697-707
    • /
    • 2018
  • A fast running model comprising the climate change effects is proposed for urban heat environment simulations so as to be used in urban heat island studies and/or the urban planning practices. By combining Hot City Model, a high resolution urban temperature prediction model utilizing the Lagrangian particle tracing technique, and the numerical weather simulation data which are constructed up to year of 2100 under the climate change scenarios, an efficient model is constructed for simulating the future urban heat environments. It is applicable to whole city as well as to a small block area of an urban region, with the computation time being relatively short, requiring the practically manageable amount of the computational resources. The heat environments of the entire metropolitan Seoul area in South Korea are investigated with the aid of the model for the present time and for the future. The results showed that the urban temperature gradually increase up to a significant level in the future. The possible effects of green roofs on the buildings are also studied, and we observe that green roofs don't lower the urban temperature efficiently while making the temperature fields become more homogeneous.

COSMIC RAYS ACCELERATED AT SHOCK WAVES IN LARGE SCALE STRUCTURE

  • RYU DONGSU;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.477-482
    • /
    • 2004
  • Shock waves form in the intergalactic space as an ubiquitous consequence of cosmic structure formation. Using N-body/hydrodynamic simulation data of a ACDM universe, we examined the properties of cosmological shock waves including their morphological distribution. Adopting a diffusive shock acceleration model, we then calculated the amount of cosmic ray energy as well as that of gas thermal energy dissipated at the shocks. Finally, the dynamical consequence of those cosmic rays on cluster properties is discussed.

The Design of Robot Arm based on the Morphological and Neurological Model of Human (인간의 신경학적.형태학적 모델에 기반한 로봇 팔 설계)

  • Choi, Hyeong-Yoon;Moon, Yong-Sun;Kim, Yi-Gon;Bae, Young-Chul
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.131-134
    • /
    • 2007
  • 본 논문에서는 현재까지 나타난 휴머노이드 로봇의 문제점을 극복하고, 미래형 로봇의 발전방향인 "개방화", "네트워크화", "모듈화" 개념을 만족하는 새로운 구조를 설계하기 위한 인간 팔의 형태학적 신경학적 모델을 제시하고 이를 기반으로 한 휴머노이드 로봇 팔 설계 방법을 제시하였다.

  • PDF

Haematococcus pluvialis Cell-Mass Sensing Using Ultraviolet Fluorescence Spectroscopy

  • Lababpour, Abdolmajid;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1922-1929
    • /
    • 2007
  • A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities. and cell mass was obtained with a high correlation ($R^2=0.9938$) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.

A study on object recognition using morphological shape decomposition

  • Ahn, Chang-Sun;Eum, Kyoung-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • Mathematical morphology based on set theory has been applied to various areas in image processing. Pitas proposed a object recognition algorithm using Morphological Shape Decomposition(MSD), and a new representation scheme called Morphological Shape Representation(MSR). The Pitas's algorithm is a simple and adequate approach to recognize objects that are rotated 45 degree-units with respect to the model object. However, this recognition scheme fails in case of random rotation. This disadvantage may be compensated by defining small angle increments. However, this solution may greatly increase computational complexity because the smaller the step makes more number of rotations to be necessary. In this paper, we propose a new method for object recognition based on MSD. The first step of our method decomposes a binary shape into a union of simple binary shapes, and then a new tree structure is constructed which ran represent the relations of binary shapes in an object. finally, we obtain the feature informations invariant to the rotation, translation, and scaling from the tree and calculate matching scores using efficient matching measure. Because our method does not need to rotate the object to be tested, it could be more efficient than Pitas's one. MSR has an intricate structure so that it might be difficult to calculate matching scores even for a little complex object. But our tree has simpler structure than MSR, and easier to calculated the matchng score. We experimented 20 test images scaled, rotated, and translated versions of five kinds of automobile images. The simulation result using octagonal structure elements shows 95% correct recognition rate. The experimental results using approximated circular structure elements are examined. Also, the effect of noise on MSR scheme is considered.

  • PDF

Sensitivity Analysis in the Prediction of Coastal Erosion due to Storm Events: case study-Ilsan beach (태풍 기인 연안침식 예측의 불확실성 분석: 사례연구-일산해변)

  • Son, Donghwi;Yoo, Jeseon;Shin, Hyunhwa
    • Journal of Coastal Disaster Prevention
    • /
    • v.6 no.3
    • /
    • pp.111-120
    • /
    • 2019
  • In coastal morphological modelling, there are a number of input factors: wave height, water depth, sand particle size, bed friction coefficients, coastal structures and so forth. Measurements or estimates of these input data may include uncertainties due to errors by the measurement or hind-casting methods. Therefore, it is necessary to consider the uncertainty of each input data and the range of the uncertainty during the evaluation of numerical results. In this study, three uncertainty factors are considered with regard to the prediction of coastal erosion in Ilsan beach located in Ilsan-dong, Ulsan metropolitan city. Those are wave diffraction effect of XBeach model, wave input scenario and the specification of the coastal structure. For this purpose, the values of mean wave direction, significant wave height and the height of the submerged breakwater were adjusted respectively and the followed numerical results of morphological changes are analyzed. There were erosion dominant patterns as the wave direction is perpendicular to Ilsan beach, the higher significant wave height, and the lower height of the submerged breakwater. Furthermore, the rate of uncertainty impacts among mean wave direction, significant wave height and the height of the submerged breakwater are compared. In the study area, the uncertainty influence by the wave input scenario was the largest, followed by the height of the submerged breakwater and the mean wave direction.

DNA barcoding of fish diversity from Batanghari River, Jambi, Indonesia

  • Huria Marnis;Khairul Syahputra;Jadmiko Darmawan;Dwi Febrianti;Evi Tahapari;Sekar Larashati;Bambang Iswanto;Erma Primanita Hayuningtyas Primanita;Mochamad Syaifudin;Arsad Tirta Subangkit
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.87-99
    • /
    • 2024
  • Global climate change, followed by an increase in anthropogenic activities in aquatic ecosystems, and species invasions, has resulted in a decline in aquatic organism biodiversity. The Batanghari River, Sumatra's longest river, is polluted by mercury-containing illegal gold mining waste (PETI), industrial pollution, and domestic waste. Several studies have provided evidence suggesting a decline in fish biodiversity within the Batanghari River. However, a comprehensive evaluation of the present status of biodiversity in this river is currently lacking. The species under investigation were identified through various molecular-based identification methods, as well as morphological identification, which involved the use of neighbor-joining (NJ) trees. All collected specimens were initially identified using morphological techniques and subsequently confirmed with molecular barcoding analysis. Morphological and DNA barcoding identification categorized all specimens (1,692) into 36 species, 30 genera and 16 families, representing five orders. A total of 36 DNA barcodes were generated from 30 genera using a 650-bp-long fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene. Based on the Kimura two-parameter model (K2P), The minimum and maximum genetic divergences based on K2P distance were 0.003 and 0.331, respectively, and the average genetic divergence within genera, families, and orders was 0.05, 0.12, 0.16 respectively. In addition, the average interspecific distance was approximately 2.17 times higher than the mean intraspecific distance. Our results showed that the COI barcode enabled accurate fish species identification in the Batanghari River. Furthermore, the present work will establish a comprehensive DNA barcode library for freshwater fishes along Batanghari River and be significantly useful in future efforts to monitor, conserve, and manage fisheries in Indonesia.

2D Finite Element Modeling of Bed Elevation Change in a Curved Channel (유한요소법을 이용한 만곡수로에서의 2차원 하상변동 수치모형)

  • Kim Tae Beom;Choi Sung-Uk;Min Kyung Duck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.414-418
    • /
    • 2005
  • A finite element model is developed for the numerical simulation of bed elevation change in a curved channel. The SU/PG (Streamline-Upwind/Petrov-Galerkin) method is used to solve 2D shallow water equations and the BG (Bubnov-Galerkin) method is used for the Exner equation. For the time derivative terms, the Crank-Nicolson scheme is used. The developed model is a decoupled model in a sense that the bed elevation does not change simultaneously with the flow during the computational time step. The total load formula with is used for the sediment transport model. The slip conditions are described along the lateral boundaries. The effects of gravity force due to geometry change and the secondary flows in a curved channel are considered in the model. For the verification, the model is applied to two laboratory experiments. The first is $140^{\circ}$ bended channel data at Delft Hydraulics Laboratory and the second is $140^{\circ}$ bended channel data at Laboratory of Fluid Mechanics of the Delft University of Technology. The finite element grid is constructed with linear quadrilateral elements. It is found that the computed results are in good agreement with measured data, showing a point bar at the inner bank and a pool at the outer bank.

  • PDF