• Title/Summary/Keyword: Morphological and Mechanical Characteristics

Search Result 82, Processing Time 0.024 seconds

Relationships between Carrier Lifetime and Surface Roughness in Silicon Wafer by Mechanical Damage (기계적 손상에 의한 실리콘 웨이퍼의 반송자 수명과 표면 거칠기와의 관계)

  • 최치영;조상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 1999
  • We investigated the effect of mechanical back side damage in viewpoint of electrical and surface morphological characteristics in Czochralski silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductance decay technique, atomic force microscope, optical microscope, wet oxidation/preferential etching methods. The data indicate that the higher the mechanical damage degree, the lower the minority carrier lifetime, and surface roughness, damage depth and density of oxidation induced stacking fault increased proportionally.

  • PDF

A Study on the Dispersion Characteristics of Carbon Nanotubes using Cryogenic Ball Milling Process (극저온 볼밀링 공정을 이용한 탄소나노튜브의 분산특성 연구)

  • Lee, Ji-Hoon;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.49-54
    • /
    • 2010
  • The cryogenic ball milling was performed on carbon nanotubes (CNTs) at an extremely low temperature to increase the dispersion of CNTs. The effects of milling speed and time on the deagglomeration and structural changes of CNTs were studied. FESEM was used to analyze the dispersion and the change of particle size before and after milling process. Transmission electron microscopic (TEM) analysis was also investigated the effect of cryogenic ball milling on the morphological characteristics of CNTs. The structural changes by the cryogenic ball milling process were further confirmed by x-ray diffraction (XRD) and Raman spectroscopic analysis. The results showed that the agglomeration of CNTs was significantly reduced and amorphous structure was observed at high milling speed. However, the milling time has no great effect on the dispersion property and structural change of CNTs compared with milling speed.

Characteristics of Microstructure and Reheating of A356 Aluminum Alloy by Pressure Rotation Equipment (가압회전식 장비를 이용한 A356 합금의 미세조직과 재가열 특성)

  • Seo P. K.;Ko J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.227-230
    • /
    • 2005
  • Many rheocasting processes had been proposed because of the difficulty of recycling, the limit of material, and the high cost of raw material in thixocasting. But, these rheocasting processes also had disadvantages such as the high initial Investment cost and the lower mechanical properties than thixocasting. In this study, a continuous fabrication of rheological material with pressure rotation equipment was newly devised to overcome the disadvantages of rheocasting process. In order to investigate the thixoformability, reheating experiments were carried out with the material fabricated by the newly devised equipment. Morphological characteristics between mechanical stirring and reheating were compared.

  • PDF

Investigation of EDM Characteristics of Nickel-based Heat Resistant Alloy

  • Kang, Sin-Ho;Kim, Dae-Eon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1475-1484
    • /
    • 2003
  • The EDM processing characteristics of one of the nickel-based heat resistant alloys, Hastelloy- X, were investigated under the various EDM conditions and analyzed in terms of surface integrity. This alloy is commonly used as a material for the hot gas path component of gas turbines and it is difficult to machine by conventional machining methods. The primary EDM parameter which was varied in this study were the pulse-on time. Since the pulse-on time is one of the main factors that determines the intensity of the electrical discharge energy, it was expected that the machining ratio and the surface integrity of the specimens would be proportionally dependent on the pulse-on duration. However, experimental results showed that MRR (material removal rate) and EWR (electrode wear rate) behaved nonlinearly with respect to the pulse duration, whereas the morphological and metallurgical features showed rather a constant trend of change by the pulse duration. In addition the heat treating process affected the recast layer and HAZ to be recrystallized but softening occurred in recast layer only. A metallurgical evaluation of the microstructure for the altered material zone was also conducted.

Effects of Kneading Treatment on the Properties of Various Pulp Fibers (Kneading 처리가 다양한 펄프 섬유들의 특성에 미치는 영향)

  • Kim, Ah-Ram;Choi, Kyoung-Hwa;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.47-54
    • /
    • 2015
  • In this study, effects of kneading treatment on the properties of hardwood bleached kraft pulp (HwBKP), softwood bleached kraft pulp (SwBKP) and hardwood bleached chemi-thermo-mechanical pulp (HwBCTMP) were elucidated with a laboratory two-shaft kneader. Kneading treatment was performed at 30% (w/w) of pulp concentration and the number of passes through the kneader was adjusted from 0 to 10 passes. Then, changes in properties of pulp fibers were evaluated. It was found that fiber characteristics were influenced by kneading treatment. Fiber length was decreased with kneading while other morphological properties such as fiber width, curl and kink became increased as the number of passes through the kneader increased from 0 to 5 passes. The magnitude of changes in the morphological properties of softwood chemical pulp was the largest, followed by hardwood chemical pulp. The morphological properties of HwBCTMP were little influenced by kneading treatment. Swelling of fiber measured by WRV was increased with kneading except of HwBCTMP.

″Drifting Cups on a Meandering Stream″in Korea

  • Chang, Keun-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1762-1767
    • /
    • 2001
  • The Posuk-Chung Pavilion if a defunct irregular stone water channel in Kyongju, Korea, once used for the meandering stream feast'by kings of Silla Dynasty during the first millennium. The poets were seated around this stone water channel who composed the Chinese poems, overlooking the streams. They load to take the punishment drinks unless they finished the poem before the drifting cup filled with the rice wine arrived at their seats on the meandering stream. In this paper, we have made computer simulation as well as well as model experiment on the ancient meandering stream of the Posuk-Chung Pavilion. The computational results are compared with the experiment and the channel flow characteristics are delineated here. It is discussed how the present Posuk-Chung channel is morphologically distinguished from the Chinese and Japanese meandering streams.

  • PDF

Investigation on glass transition temperature of low density polyethylene by the characteristics of temperature dependent linear expansion (선팽창 온도특성에 의한 저밀도 폴리에틸렌의 유리 천이온도에 대한 고찰)

  • 김봉흡;강도열;김재환
    • 전기의세계
    • /
    • v.30 no.7
    • /
    • pp.441-447
    • /
    • 1981
  • As a preceeding work for the study on dielectric characterstics of a kind of low density polyethylene introduced morphological change by mechanical method, glass transition temperature which is regarded as a macroscopic aspect for relaxation of molecular chain segments has been observed by means of temperature dependent dilatometric measurement. The origina specimen clearly shows two knees which correspond to two peaks (.gamma. and .betha. peak) in the intenal friction measurement, suggesting the existence of separated glass transition temperatures at 150.deg.k and 260.deg.k respectively. On the specimen irradiated to 100 Mrad both glass transition temperatures tend to shift towards high temperature sides because of crosslinking by irradiation. furthemore an evidence can be seen that radiation effect, even in amorphous phase, is also slelctive depending on slight morphological differences. The specimen extended to four times in length shows a peculiar nature such as negative linear thermal expansion coefficient increasing with temperature between 220.deg.k and ambient temperature and that this fact is interpreted by considering that c axis of the lattice aligns along the extended direction by drawing, further c axis inherently possesses the characteristics of negative linear thermal expansion coefficient. For the observations that the relatively small positive linear expansion on the specimen extended to ca. two times as well as the part below 220.deg.k of the specimen extended to four times, it is considered for the reason of the facts that the incompletely oriented region indicated as the middle part of Peterlin's model tends to restore partially to orginal arrangement-a kind of phase transition-as increasing with temperature.

  • PDF

Flow Characteristics in a Human Airway model for Oral Cancer Surgery by PIV Experiment and Numerical Simulation (PIV 측정 및 수치해석을 이용한 구강암 수술에 따른 기도 형상 내 유동 특성)

  • Hong, Hyeonji;An, Se Hyeon;Seo, Heerim;Song, Jae Min;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2021
  • Oral cancer surgery typically consists of resection of lesion, neck dissection and reconstruction, and it has an impact on the position of hyoid bone. Therefore, morphological change of airway can occur since the geometric parameter of airway is correlated with the hyoid bone. Airflow is affected by geometry of the airway. In this study, flow characteristics were compared between pre- and post-surgery models by both particle image velocimetry (PIV) and numerical simulation. 3D model of upper airway was reconstructed based on CT data. Velocity is accelerated by the reduced channel area, and vortex and recirculation region are observed in pre- and post-surgery models. For the post-surgery model, high pressure distribution is developed by significantly decreased hydraulic diameter, and the longitudinal flow stream is also interrupted.

Effects of Engine Loads on Exhaust Emissions and Particulate Matter with Morphological Characteristics in a Common Rail 4 Cylinder Diesel Engine

  • Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2010
  • The purpose of this paper is to investigate the effects of fuel injection strategy and engine load on the structure and emissions characteristics of a DI diesel engine with 1.6L of piston displacement. In order to analyze the particulate matter (PM) and exhaust emissions characteristics in a direct injection diesel engine, the quantity of PM and exhaust emissions (including HC, CO and $NO_X$) were investigated under various injection strategies and engine loads. Two different injection strategies (one pilot/main injection and two pilots/main injection) was investigated under the various engine loads. A thermophoretic sampling method with a scanning electron microscope (SEM) were used to obtain the PM morphology (including primary particles, the size of the agglomerates, the number of agglomerates, the fractal dimension). The quantity of soot gradually increased with increasing engine load at both injection strategies. The primary particles in the PM agglomerates indicate that the average of the primary particle and radius of gyration increased as the engine load increased.

Investigation of Thermal/hygrothermal Aging Effects on the Ignition Characteristics of Ti Metal-based Pyrotechnics and Construction of the Aging Models (열/수분노화로 인한 Ti 금속 기반의 파이로 물질의 점화 성능 변화와 노화 모델 제시)

  • Oh, Juyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.26-41
    • /
    • 2021
  • Titanium hydride potassium perchlorate (THPP) has played an important role as initiators of the propulsion system. However, the 'aging' may cause performance degradation and even give rise to a failure in the total system. In this study, various hygrothermal aging conditions were considered and the aging effects on thermodynamic and ignition characteristics of THPP are provided via thermal analysis and ignition measurements. Also, physical-chemical changes were identified by morphological analysis. In conclusion, thermal aging led to Eα decrease-high reactivity due to oxidizer decomposition whereas hygrothermal aging gave rise to an opposite tendency by fuel oxidation.