• Title/Summary/Keyword: Morlet wavelet transform

Search Result 25, Processing Time 0.018 seconds

High-order, closely-spaced modal parameter estimation using wavelet analysis

  • Le, Thai-Hoa;Caracoglia, Luca
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.423-442
    • /
    • 2015
  • This study examines the wavelet transform for output-only system identification of ambient excited engineering structures with emphasis on its utilization for modal parameter estimation of high-order and closely-spaced modes. Sophisticated time-frequency resolution analysis has been carried out by employing the modified complex Morlet wavelet function for better adaption and flexibility of the time-frequency resolution to extract two closely-spaced frequencies. Furthermore, bandwidth refinement techniques such as a bandwidth resolution adaptation, a broadband filtering technique and a narrowband filtering one have been proposed in the study for the special treatments of high-order and closely-spaced modal parameter estimation. Ambient responses of a 5-story steel frame building have been used in the numerical example, using the proposed bandwidth refinement techniques, for estimating the modal parameters of the high-order and closely-spaced modes. The first five natural frequencies and damping ratios of the structure have been estimated; furthermore, the comparison among the various proposed bandwidth refinement techniques has also been examined.

Analysis of Ringing by Continuous Wavelet (연속 웨이브렛에 의한 Ringing현상 해석)

  • 권순홍;이형석;하문근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.118-122
    • /
    • 2000
  • In this study, Ringing is investigated by continuous wavelet transform. Ringing is considered to be one of the typical transient phenomena in the field of ocean engineering. The wavelet analysis is adopted to analyze ringing from the point that wavelet analysis is capable of frequency analysis as well as time domain analysis. The use mother wavelet is the Morlet wavelet. The relation between the frequency of the time series and that of wavelet can be clearly defined with Mor1et wavelet. Experimental data obtained by other researchers was used. The wave height time series and acceleration times series of the surface piercing cylinder were analyzed. The results show that the proposed scheme can detect typical frequency region by the time domain analysis which could hardly be detected if one relied on the frequency analysis.

  • PDF

Application of Directional Wavelet to Ocean Wave Image Analysis (방향 웨이브렛을 적용한 해양파 이미지 분석)

  • Kwon S. H.;Lee H. S.;Park J. S.;Ha M. K.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.377-380
    • /
    • 2002
  • This paper presents the results of a study investigating methods of interpretation of wave directionality based on wavelet transforms. Two-dimensional discrete wavelet was used for the analysis. The proposed scheme utilizes a single frame of ocean waves to detect their directionality. This fact is striking considering the fact that traditional methods require long time histories of ocean wave elevation measured at various locations. The developed schemes were applied to the data generated from numerical simulations and video images to test the efficiency of the proposed scheme in detecting the directionality of ocean waves.

  • PDF

Wavelet based system identification for a nonlinear experimental model

  • Li, Luyu;Qin, Han;Niu, Yun
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2017
  • Traditional experimental verification for nonlinear system identification often faces the problem of experiment model repeatability. In our research, a steel frame experimental model is developed to imitate the behavior of a single story steel frame under horizontal excitation. Two adjustable rotational dampers are used to simulate the plastic hinge effect of the damaged beam-column joint. This model is suggested as a benchmark model for nonlinear dynamics study. Since the nonlinear form provided by the damper is unknown, a Morlet wavelet based method is introduced to identify the mathematical model of this structure under different damping cases. After the model identification, earthquake excitation tests are carried out to verify the generality of the identified model. The results show the extensive applicability and effectiveness of the identification method.

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.