• Title/Summary/Keyword: Mori-Tanaka approach

Search Result 31, Processing Time 0.021 seconds

Investigating nonlinear vibration behavior of sandwich panels with multi-scale skins based on a numerical method

  • Cui, Zhenming;Cai, Xin;Ali, H. Elhosiny;Muhsen, Sami
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.283-292
    • /
    • 2022
  • A nonlinear vibrational analysis of sandwich curved panels having multi-scale face sheets has been performed in this article based on differential quadrature method (DQM). All mechanical properties of multi-scale skins have been established in the context of three-dimensional Mori-Tanaka scheme for which the influences of glass fibers and random carbon nanotubes (CNTs) have been taken into account. The governing equations for sandwich the panel have been developed based upon thin shell formulation in which geometry nonlinearities have been taken into account. Next, DQ approach has been applied to solve the governing equations for determining the relationships of frequencies with deflections for curved panels. It will be demonstrated that the relationships of frequencies with deflections are dependent on the changing of CNT weight fractions, fibers alignment, fibers volume, panel radius and skin thickness.

Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method (비파괴적 방법에 의한 입자 강화 복합재료의 부피분율 평가: 초음파법)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 1998
  • A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix ($SiC_p/Al$) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions.

  • PDF

Time-dependent buckling analysis of SiO2 nanoparticles reinforced concrete columns exposed to fire

  • Bidgoli, M. Rabani;Saeidifar, M.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.119-127
    • /
    • 2017
  • Time-dependent buckling of embedded straight concrete columns armed with Silicon dioxide($SiO_2$) nano-particles exposed to fire is investigated in the present study for the fire time. The column is simulated mathematically with Timoshenko beam model. The governing mass conservation equations to describe heat and moisture transport in concrete containing free water, water vapor, and dry air in conjunction with the conversion of energy are considered. The characteristics of the equivalent composite are determined using Mori-Tanaka approach. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the critical buckling load and critical buckling time of structure. The influences of volume percent of $SiO_2nano-particles$, geometrical parameters, elastic foundation and concrete porosity are investigated on the time-dependent buckling behaviours of structure. Numerical results indicate that reinforcing the concrete column with $SiO_2nano-particles$, the structure becomes stiffer and the critical buckling load and time increase.

Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.527-546
    • /
    • 2018
  • This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes (CNTs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load. Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration effect. The motion equations are derived using Hamilton's principle and the differential quadrature method (DQM) is employed to solve them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of system decreases while considering the CNTs agglomeration effect has an inverse effect.

Nonlocal vibration analysis of FG nano beams with different boundary conditions

  • Ehyaei, Javad;Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.85-111
    • /
    • 2016
  • In this paper, the classical and non-classical boundary conditions effect on free vibration characteristics of functionally graded (FG) size-dependent nanobeams are investigated by presenting a semi analytical differential transform method (DTM) for the first time. Three kinds of mathematical models, namely; power law (P-FGM), sigmoid (S-FGM) and Mori-Tanaka (MT-FGM) distribution are considered to describe the material properties in the thickness direction. The nonlocal Eringen theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton's principle and they are solved applying semi analytical differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as small scale effects, spring constant factors, various material compositions and mode number on the normalized natural frequencies of the FG nanobeams in detail. It is explicitly shown that the vibration of FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods

  • Zamani, Abbas;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.671-682
    • /
    • 2017
  • In this research, seismic response of pipes is examined by applying nanotechnology and piezoelectric materials. For this purpose, a pipe is considered which is reinforced by carbon nanotubes (CNTs) and covered with a piezoelectric layer. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via cylindrical shell element and Mindlin theory. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite and to consider the effect of the CNTs agglomeration on the scismic response of the structure. Moreover, the dynamic displacement of the structure is extracted using harmonic differential quadrature method (HDQM) and Newmark method. The main goal of this research is the analysis of the seismic response using piezoelectric layer and nanotechnology. The results indicate that reinforcing the pipeline by CNTs leads to a reduction in the displacement of the structure during an earthquake. Also the negative voltage applied to the piezoelectric layer reduces the dynamic displacement.

Theoretical and experimental analysis of wave propagation in concrete blocks subjected to impact load considering the effect of nanoparticles

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.711-718
    • /
    • 2017
  • Nanotechnology is a new filed in concrete structures which can improve the mechanical properties of them in confronting to impact and blast. However, in this paper, a mathematical model is introduced for the concrete models subjected to impact load for wave propagation analysis. The structure is simulated by the sinusoidal shear deformation theory (SSDT) and the governing equations of the concrete model are derived by energy method and Hamilton's principle. The silicon dioxide ($SiO_2$) nanoparticles are used as reinforcement for the concrete model where the characteristics of the equivalent composite are determined using Mori-Tanaka approach. An exact solution is applied for obtaining the maximum velocity of the model. In order to validate the theoretical results, three square models with different impact point and Geophone situations are tested experimentally. The effect of different parameters such as $SiO_2$ nanoparticles volume percent, situation of the impact, length, width and thickness of the model as well as velocity, diameter and height of impactor are shown on the maximum velocity of the model. Results indicate that the theoretical and experimental dates are in a close agreement with each other. In addition, using from $SiO_2$ nanoparticles leads to increase in the stiffness and consequently maximum velocity of the model.

An extended finite element method for modeling elastoplastic FGM plate-shell type structures

  • Jrad, Hanen;Mars, Jamel;Wali, Mondher;Dammak, Fakhreddine
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.299-312
    • /
    • 2018
  • In this paper, an extended finite element method is proposed to analyze both geometric and material non-linear behavior of general Functionally Graded Material (FGM) plate-shell type structures. A user defined subroutine (UMAT) is developed and implemented in Abaqus/Standard to study the elastoplastic behavior of the ceramic particle-reinforced metal-matrix FGM plates-shells. The standard quadrilateral 4-nodes shell element with three rotational and three translational degrees of freedom per node, S4, is extended in the present study, to deal with elasto-plastic analysis of geometrically non-linear FGM plate-shell structures. The elastoplastic material properties are assumed to vary smoothly through the thickness of the plate-shell type structures. The nonlinear approach is based on Mori-Tanaka model to underline micromechanics and locally determine the effective FGM properties and self-consistent method of Suquet for the homogenization of the stress-field. The elasto-plastic behavior of the ceramic/metal FGM is assumed to follow Ludwik hardening law. An incremental formulation of the elasto-plastic constitutive relation is developed to predict the tangent operator. In order to to highlight the effectiveness and the accuracy of the present finite element procedure, numerical examples of geometrically non-linear elastoplastic functionally graded plates and shells are presented. The effects of the geometrical parameters and the volume fraction index on nonlinear responses are performed.

A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations

  • Nebab, Mokhtar;Benguediab, Soumia;Atmane, Hassen Ait;Bernard, Fabrice
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.415-431
    • /
    • 2020
  • In this study, dynamics responses of advanced composite plates resting variable elastic foundations via a quasi-3D theory are developed using an analytical approach. This higher shear deformation theory (HSDT) is included the shear deformation theory and effect stretching that has five unknowns, which is even inferior to normal deformation theories found literature and other theories. The quasi-three-dimensional (quasi-3D) theory accounts for a parabolic distribution of the transverse shear deformation and satisfies the zero traction boundary conditions on the surfaces of the advanced composite plate without needing shear correction factors. The plates assumed to be rest on two-parameter elastic foundations, the Winkler parameter is supposed to be constant but the Pasternak parameter varies along the long side of the plate with three distributions (linear, parabolic and sinusoidal). The material properties of the advanced composite plates gradually vary through the thickness according to two distribution models (power law and Mori-Tanaka). Governing differential equations and associated boundary conditions for dynamics responses of the advanced composite plates are derived using the Hamilton principle and are solved by using an analytical solution of Navier's technique. The present results and validations of our modal with literature are presented that permitted to demonstrate the accuracy of the present quasi-3D theory to predict the effect of variables elastic foundation on dynamics responses of advanced composite plates.

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.