• 제목/요약/키워드: Mori domain

검색결과 29건 처리시간 0.025초

Cloning and Characterization of Bombyx mori Cyclophilin A

  • Kim, Sung-Wan;Yun, Eun-Young;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Kwon, O-Yu;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제23권2호
    • /
    • pp.223-229
    • /
    • 2011
  • Cyclophilins are originally identified as cytosolic binding protein of the immunosuppressive drug cyclosporine A. They have an activity of peptidyl prolyl cis/trans-isomerases (PPIase), which may play important roles in protein folding, trafficking, assembly and cell signaling. In this study, we report the cloning and characterization of a Bombyx mori cyclophilin A (bCypA) cDNA. The full-length cDNA of bCypA consist of 947 nucleotides with a polyadenylation signal sequence AATAAA and contain an open reading frame of 498 nucleotides encoding a polypeptide of 166 amino acids. The deduced amino acid sequence of bCypA shares a central peptidyl prolyl cis/trans-isomerase and a cyclosporin-A-binding domain with other cyclophilin sequences. Relative quantification real-time (RT) PCR analysis shows that mRNA transcripts of bCypA are detected in all the investigated tissues and highest expression level in the skin of 3-day-old 5 instar larva. Also, bCypA had PPIase activity on the proline-containing peptides. Accordingly, we suggest that bCypA is a new member of the cyclophilin A (CyPA) family and will be useful for quality control of bioactivity recombinant proteins with proline-containing peptides.

Analysis of the Residual Stress Produced by non-metallic Inclusions during Rail Manufacturing Process (레일의 제조공정에서 비금속 개재물에 의한 레일의 잔류응력 해석)

  • 구병춘;정우현;이희성;서정원
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.352-357
    • /
    • 1999
  • During the cooling process of rail, residual stresses are produced due to the difference of the coefficients of thermal expansion between rail and inhomogeneous non-metallic inclusions such as sulphides and oxides. A micro-mechanical approach is used to obtain the stresses in the inclusions and matrix, After obtaining the stress of an elliptical inhomogeneous inclusion in an infinite domain, average stresses of randomly distributed spherical inclusions are obtained by use of Mori-Tanaka's self consistent method. The magnitude of the calculated residual stress is near to the yield stress of the matrix in case of the spherical inclusions.

  • PDF

A Study on the Prediction of Elastoplastic Behavior of Carbon Nanotube/Polymer Composites (계면 결합력과 나노튜브의 응집에 따른 나노튜브/고분자 복합재의 탄소성 거동 예측에 대한 연구)

  • Yang, Seunghwa;Yu, Suyoung;Ryu, Junghyun;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제26권6호
    • /
    • pp.423-430
    • /
    • 2013
  • In this research, a paramteric study to account for the effect of interfacial strength and nanotube agglomeration on the elastoplastic behavior of carbon nanotube reinforced polypropylene composites is performed. At first, the elastoplastic behavior of nanocomposites is predicted from molecular dynamics(MD) simulations. By combining the MD simulation results with the nonlinear micromechanics model based on the Mori-Tanaka model, a two-step domain decomposition method is applied to inversely identify the elastoplastic behavior of adsorption interphase zone inside nanocomposites. In nonlinear micromechanics model, the secant moduli method combined with field fluctuation method is used to predict the elastoplastic behavior of nanocomposites. To account for the imperfect material interface between nanotube and matrix polymer, displacement discontinuity condition is applied to the micromechanics model. Using the elastoplastic behavior of the adsorption interphase zone obtained from the present study, stress-strain relation of nanocomposites at various interfacial bonding condition and local nanotube agglomeration is predicted from nonlinear micromechanics model with and without the adsorption interphase zone. As a result, it has been found that local nanotube agglomeration is the most important design factor to maximize reinforcing effect of nanotube in elastic and plastic behavior.

Molecular Cloning of a Delta-class Glutathione S-transferase Gene from Bombus ignitus

  • Park, Jong-Hwa;Yoon, Hyung-Joo;Gui, Zhong Zheng;Jin, Byung-Rae;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제18권1호
    • /
    • pp.28-32
    • /
    • 2009
  • We describe here the cloning and characterization of a cDNA encoding the glutathione S-transferase (GST) from the bumblebee Bombus ignitus. The Delta-class B. ignitus GST (BiGSTD) gene spans 1668 bp and consists of four introns and five exons that encode 216 amino acid residues with a calculated molecular weight of approximately 24561 Da and a pI of 8.03. The N-terminal domain of BiGSTD has a conserved Ser residue, as well as conserved Lys, Pro, Glu, Ser and Tyr residues that are involved in the GSH-binding site of GST. The BiGSTD showed 60% protein sequence identity to the Bombyx mori GSTT1, 58% to Musca domestica GST, 57% to Drosophila melanogaster GST, and 55% to Anopheles gambiae GST1. BiGSTD was close to the insect-specific Delta class of GSTs in a phylogenetic tree. Northern blot analysis showed that BiGSTD is highly expressed in the fat body and midgut, and less so in the muscles of B. ignitus worker bees.

Molecular Cloning of a LIM Protein cDNA from the Mulberry Longicorn Beetle, Apriona germari

  • Gui, Zhongzheng;Wei, Yadong;Yoon, Hyung Joo;Kim, Iksoo;Guo, Xijie;Jin, Byung Rae;Sohn, Hung Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권1호
    • /
    • pp.149-153
    • /
    • 2004
  • Here we report the molecular cloning of a LIM protein cDNA of the CRP (cysteine-rich protein) family from the mulberry longicorn beetle, Apriona, geramri. The A. germari LIM protein cDNA contains an open reading frame of 276 bp encoding 92 amino acid residues with a calculated molecular weight of approximately 10 kDa. The A. germari LIM protein contains the cysteine-rich consensus sequence of LIM domain and the glycine-rich consensus sequence observed in cysteine-rich protein family 1 (CRP1). The potential nuclear targeting signal is retained. The deduced amino acid sequence of the A. germari LIM protein cDNA showed 81 % identity to both Bombyx mori muscle LIM protein (Mlp) and Drosophila melanogaster Mlp60A and 77% to Epiblema scudderiana Mlp. Northern blot analysis showed that A. germari LIM protein is highly expressed in epidermis and muscle, and less strongly in midgut, but not in the fat body.

The level set-based topology optimization for three-dimensional functionally graded plate using thin-plate spline

  • Banh, Thanh T.;Luu, Nam G.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.633-649
    • /
    • 2022
  • This paper is first implemented with the bending behavior of three-dimensional functionally graded (3DFG) plates in the framework of level set-based topology optimization (LS-based TO). Besides, due to the suitable properties of the current design domain, the thin-plate spline (TPS) is recognized as a RBF to construct the LS function. The overall mechanical properties of the 3DFG plate are assessed using a power-law distribution scheme via Mori-Tanaka micromechanical material model. The bending response is obtained using the first-order shear deformation theory (FSDT). The mixed interpolation of four elements of tensorial components (MITC4) is also implemented to overcome a well-known shear locking problem when the thickness becomes thinner. The Hamilton-Jacobi method is utilized in each iteration to enforce the necessary boundary conditions. The mathematical formulas are expressed in great detail for the LS-based TO using 3DFG materials. Several numerical examples are exhibited to verify the efficiency and reliability of the current methodology with the previously reported literature. Finally, the influences of FG materials in the optimized design are explained in detail to illustrate the behaviors of optimized structures.

Cloning, Sequencing, and Expression of the Gene Encoding a Multidomain Endo-$\beta$-1,4-Xylanase from Paenibacillus curdlanolyticus B-6, and Characterization of the Recombinant Enzyme

  • Waeonukul, Rattiya;Pason, Patthra;Kyu, Khin Lay;Sakka, Kazuo;Kosug, Akihiko;Mori, Yutaka;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권3호
    • /
    • pp.277-285
    • /
    • 2009
  • The nucleotide sequence of the Paenibacillus curdlanolyticus B-6 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,828 nucleotides encoding a protein of 1,276 amino acids with a predicted molecular mass of 142,726 Da. Sequence analysis indicated that Xyn10A is a multidomain enzyme comprising nine domains in the following order: three family 22 carbohydrate-binding modules (CBMs), a family 10 catalytic domain of glycosyl hydrolases (xylanase), a family 9 CBM, a glycine-rich region, and three surface layer homology (SLH) domains. Xyn10A was purified from a recombinant Escherichia coli by a single step of affinity purification on cellulose. It could effectively hydrolyze agricultural wastes and pure insoluble xylans, especially low substituted insoluble xylan. The hydrolysis products were a series of short-chain xylooligosaccharides, indicating that the purified enzyme was an endo-$\beta$-1,4-xylanase. Xyn10A bound to various insoluble polysaccharides including Avicel, $\alpha$-cellulose, insoluble birchwood and oat spelt xylans, chitin, and starches, and the cell wall fragments of P. curdlanolyticus B-6, indicating that both the CBM and the SLH domains are fully functioning in the Xyn10A. Removal of the CBMs from Xyn10A strongly reduced the ability of plant cell wall hydrolysis. These results suggested that the CBMs of Xyn10A play an important role in the hydrolysis of plant cell walls.

OPTICAL-INFRARED AND HIGH-ENERGY ASTRONOMY COLLABORATION AT HIROSHIMA ASTROPHYSICAL SCIENCE CENTER

  • UEMURA, MAKOTO;YOSHIDA, MICHITOSHI;KAWABATA, KOJI S.;MIZUNO, TSUNEFUMI;TANAKA, YASUYUKI T.;AKITAYA, HIROSHI;UTSUMI, YOUSUKE;MORITANI, YUKI;ITOH, RYOSUKE;FUKAZAWA, YASUSHI;TAKAHASHI, HIROMITSU;OHNO, MASANORI;UI, TAKAHIRO;TAKAKI, KATSUTOSHI;EBISUDA, NANA;KAWAGUCHI, KENJI;MORI, KENSYO;OHASHI, YUMA;KANDA, YUKA;KAWABATA, MIHO;TAKATA, KOJI;NAKAOKA, TATSUYA
    • Publications of The Korean Astronomical Society
    • /
    • 제30권2호
    • /
    • pp.679-682
    • /
    • 2015
  • The Hiroshima Astrophysical Science Center (HASC) was founded in 2004 at Hiroshima University, Japan. The main mission of this institute is the observational study of various transient objects including gamma-ray bursts, supernovae, novae, cataclysmic variables, and active galactic nuclei by means of multi-wavelength observations. HASC consists of three divisions; the optical-infrared astronomy division, high-energy astronomy division, and theoretical astronomy division. HASC is operating the 1.5m optical-infrared telescope Kanata, which is dedicated to follow-up and monitoring observations of transient objects. The high-energy division is the key operation center for the Fermi gamma-ray space telescope. HASC and the high-energy astronomy group in the department of physical science at Hiroshima University are closely collaborating with each other to promote multi-wavelength time-domain astronomy. We report the recent activities of HASC and some science topics pursued by this multi-wavelength collaboration.

Isolation and Characterization of a Novel Transcription Factor ATFC Activated by ER Stress from Bombyx mori Bm5 Cell Lines (누에 배양세포(Bm5)로부터 분리한 새로운 전사제어인자 ATFC의 특성분석)

  • 구태원;윤은영;김성완;최광호;황재삼;박수정;권오유;강석우
    • Journal of Life Science
    • /
    • 제13권5호
    • /
    • pp.596-603
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). To obtain genes related to UPR from B. mori, the cDNA library was constructed with mRNA isolated from Bm5 cell lines in which N-glycosylation was inhibited by tunicamycin treatment. From the cDNA library, we selected 40 clones that differentially expressed when cells were treated with tunicamycin. Among these clones, we have isolated ATFC gene showing similarity with Hac1p, encoding a bZIP transcription factor of 5. cerevisiae. Basic-leucine zipper (bZIP) domain in amino acid sequences of ATFC shared homology with yeast Hac1p. Also, ATFC is up-regulated by accumulation of unfolded proteins in the ER through the treatment of ER stress drugs. Therefore we suggest that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.