• 제목/요약/키워드: Mooring forces

검색결과 120건 처리시간 0.03초

Dynamic and structural responses of a submerged floating tunnel under extreme wave conditions

  • Jin, Chungkuk;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.413-433
    • /
    • 2017
  • The dynamic and structural responses of a 1000-m long circular submerged floating tunnel (SFT) with both ends fixed under survival irregular-wave excitations are investigated. The floater-mooring nonlinear and elastic coupled dynamics are modeled by a time-domain numerical simulation program, OrcaFlex. Two configurations of mooring lines i.e., vertical mooring (VM) and inclined mooring (IM), and four different buoyancy-weight ratios (BWRs) are selected to compare their global performances. The result of modal analysis is included to investigate the role of the respective natural frequencies and elastic modes. The effects of various submergence depths are also checked. The envelopes of the maximum/minimum horizontal and vertical responses, accelerations, mooring tensions, and shear forces/bending moments of the entire SFT along the longitudinal direction are obtained. In addition, at the mid-section, the time series and the corresponding spectra of those parameters are also presented and analyzed. The pros and cons of the two mooring shapes and high or low BWR values are systematically analyzed and discussed. It is demonstrated that the time-domain numerical simulation of the real system including nonlinear hydro-elastic dynamics coupled with nonlinear mooring dynamics is a good method to determine various design parameters.

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

ANCHOR MOORING LINE ANALYSIS IN COHESIVE SEAFLOOR

  • Sangchul Bang
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.58-76
    • /
    • 2000
  • An analytical solution method capable of determining the geometric configuration and developed tensile forces of mooring lines associated with fixed plate/pile or drag anchors is presented. The solution method, satisfying complete equilibrium conditions, is capable of analyzing multi-segmented mooring lines that can consist of either chains, cables, or wires embedded in layered seafloor soils. Centrifuge model tests and full -scale field tests were used to calibrate and validate the analytical solution.

  • PDF

2점 계류된 선박에 대한 운동 해석 (Motion Analysis of Two Point Moored Oil Tanker)

  • 이호영;임춘규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.232-236
    • /
    • 2003
  • The anchor is laid on seabed and the main engine is worked to against incident environmental loads in typoon. As the main engine is broken down in the storm, the anchor chain is cutted and the vessel is drifted. Although a ship is moored by two point mooring lines to keep the her position, a ship is crashed into a rock because of typoon and the accident of oil spilling may be occured. In this paper, we studied the position-keeping of a ship which is analyized based on the slow motion maneuvering equations considering wave, current and wind. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical of MMG. The two point mooring forces are quasisatatically evaluated by using the catenary equation. The coefficeints of wind forces are modeled from Isherwood’s emperical data and the variation of wind speed is estimated by wind spectrum. The nonlinear motions of a two point moored ship are simulated considering wave, current, wind load in time domain.

  • PDF

다점 계류된 원유 저장선에 대한 저주파수 운동 해석 (Slow Drift Motion Analyses for a FPSO with Spread Mooring Systems)

  • 이호영;박종환;곽영기
    • 한국해안해양공학회지
    • /
    • 제13권3호
    • /
    • pp.195-201
    • /
    • 2001
  • 본 논문은 파랑중에 다전 계류된 원유저장선에 대한 저주파수 운동을 수치 모사하였다. 시간영역에서의 운동방정식은 충격응답함수를 포함하여 수평면상의 운동 즉 전후, 좌우 및 선수 운동을 고려하였다. 시간영역의 운동방정식에 나타난 부가질량, 파랑감쇠계수, 1차항 파랑 강제력 그리고 2차항 파랑 강제력을 주파수 영역의 특이점 분포법을 사용하여 계산하였고, 다점 계류된 계류삭은 체인이 해저면에 닿은 운동 효과를 포함하여 준 정적 현수선 이론으로 산정되었다. 계산 예로서 장파정 불규칙 파랑 중에 놓인 바아지식 원유저장선에 대한 시간 영역 해석을 수행하였다.

  • PDF

2점 계류된 선박에 대한 수평면상 표류운동 해석 (Drift Motion Analysis on Horizontal Plane of a Two-Point Moored Oil Tanker)

  • 이호영;임춘규
    • 한국해양공학회지
    • /
    • 제18권3호
    • /
    • pp.8-12
    • /
    • 2004
  • The anchor is laid on the seabed, and the main engine is working against incident environmental loads in a typhoon. As the main engine is broken Mum in the storm, the anchor chain is cut and the vessel drifts. Although a ship is moored by two-point mooring lines to maintain her position, it has crashed into a rock because of a typhoon, resulting in a possible accidental oil spillage. In this paper, we studied maintenance of a ship's position, which is analyzed based on the slow motion maneuvering equations considering wave, current, and wind. To estimate wave loads, the direct integration method is employed. The current forces are calculated, using MMG (Mathematical Modeling Group). Th two-point mooring forces are quasi-statistically evaluated, using the catenary equation. Th coefficients of wind forces are modeled from Isherwood's empirical data, and the variation of wind speed is estimated by wind spectrum. The nonlinear motions of a two-point moored ship are simulated, considering wave, current, and wind load, in specific domain of time.

An Experimental Study on the Motion of the Floater Moored near Port in Waves Generated by a Ship

  • Nguyen, Thi Thanh Diep;Nguyen, Van Minh;Yoon, Hyeon Kyu;Kim, Young Hun
    • 한국항해항만학회지
    • /
    • 제44권5호
    • /
    • pp.363-374
    • /
    • 2020
  • In the past, various research on the effects of waves generated by ships has been investigated. The most noticeable effect of the waves generated by a passing ship is the increase of the hydrodynamic forces and the unwanted large motion of the moored ship and high mooring forces that occur. Thus, it is crucial to investigate the effect of the waves generated by the passing ship near port on the motion of the moored ship and the tension of the mooring lines. A model test was performed with virtual ship-generated waves in a square tank at CWNU (Changwon National University). The IMU (Inertial Measurement Unit) and Optical-based system were used to measure the 6DOF (Six Degrees of Freedom) motion of the moored floater. Additionally the tension of mooring lines were measured by the tension gauges. The effects of the wave direction and wave height generated by the virtual ship-generated waves on the motion of the moored floater were analyzed.

바지선 구조변경이 계류력 변화와 안정성에 미치는 영향 (Changes of Mooring Force due to Structural Modification of a Barge Ship)

  • 박정홍;김광훈;문병영;장택수
    • 한국유체기계학회 논문집
    • /
    • 제14권5호
    • /
    • pp.48-54
    • /
    • 2011
  • Structural modifications of a ship may cause a fatal accident such as sinking and wrecking of ship. Especially, barge ship can be easily reconstructed to load more bulk cargo. In this study, for a real accident case, change of mooring force due to structural modification was analyzed to evaluate accident risk. A two dimensional dynamic model for the barge ship was constructed to compute mooring forces with related to floating motion. The equation of motion was established in Matlab code and buoyancy was calculated by using direct integration of submerged volume. The results showed that wind force, current force, and mooring force after rebuilding was approximately 4.3 kN, 14 kN, 1,561 kN respectively. The maximum force of mooring force according to the length of mooring cable were 1,614 kN at 30 m of mooring cable. Thus, an arbitrary modification of ship lead instability and unreliable result so that illegal rebuilding of ship should be avoided.

불규칙파 중에서 돌핀 계류된 해상공항에 대한 운동 (Motion Analyses for a Very Large Floating Structure with Dolphin Mooring Systems in Irregular Waves)

  • 이호영;신현경;임춘규;김외현;강점문;윤명철
    • 대한조선학회논문집
    • /
    • 제38권2호
    • /
    • pp.10-18
    • /
    • 2001
  • 초대형 해상 공항은 길이나 폭이 수 킬로미터인 거대 구조물이며, 해상에 계류된 해상공항의 설계에 있어 파도에 의한 1차항 파강제력과 2차항 파강제력은 반드시 고려하여야 한다. 본 논문에서 파중에서 돌핀계류된 해상공항에 대한 운동응답의 시간영역해석이 제시된다. 운동방정식에서 동유체력 계수와 파도에 의한 힘은 주파수 영역의 3차원 패널 방법으로부터 계산되며, 동시에 돌핀계류계에 대한 계류력과 수평방향의 표류력이 본 계산에서 얻어진다. 본 논문의 계산 예로 일본에서 실증실험을 수행한 phase I 해상공항에 대해 불규칙파 중에서 시간영역 해석이 제시된다.

  • PDF

Development of Design Static Property Analysis of Mooring System Caisson for Offshore Floating Wind Turbine

  • Dodaran, Asgar Ahadpour;Park, Sang-Kil
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.97-105
    • /
    • 2012
  • A all floating structures operating within a limited area require, stationkeeping to maintain the motions of the floating structure within permissible limits. In this study, methods for selecting and optimizing the mooring system Caisson for floating wind turbines in shallow water are investigated. The design of the mooring system is checked against the governing rules and standards. Adequately verifying the design of floating structures requires both numerical simulations and model testing, the combination of which is referred to as the hybrid method of design verification. The challenge in directly scaling moorings for model tests is the depth and spatial limitations of wave basins. It is therefore important to design and build equivalent mooring systems to ensure accurate static properties (global restoring forces and global stiffness).