• Title/Summary/Keyword: Mooring chain

Search Result 39, Processing Time 0.017 seconds

Fatigue analysis on the mooring chain of a spread moored FPSO considering the OPB and IPB

  • Kim, Yooil;Kim, Min-Suk;Park, Myong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.178-201
    • /
    • 2019
  • The appropriate design of a mooring system to maintain the position of an offshore structure in deep sea under various environmental loads is important. Fatigue design of the mooring line considering OPB/IPB(out-of-plane bending/in-plane bending) became an essential factor after the incident of premature fatigue failure of the mooring chain due to OPB/IPB in the Girassol region in West Africa. In this study, mooring line fatigue analysis was performed considering the OPB/IPB of a spread moored FPSO in deep sea. The tension of the mooring line was derived by hydrodynamic analysis using the de-coupled analysis method. The floater motion time histories were calculated under the assumption that the mooring line behaves in quasi-static manner. Additional time domain analysis was carried out by prescribing the obtained motions on top of the selected critical mooring line, which was determined based on spectral fatigue analysis. In addition, nonlinear finite element analysis was performed considering the material nonlinearities, and both the interlink stiffness and stress concentration factors were derived. The fatigue damage to the chain surface was estimated by combining both the hydrodynamic and stress analysis results.

Bending Behavior of the Mooring Chain Links Subjected to High Tensile Forces (강한 인장 상태에서의 계류 체인 링크의 휨 거동)

  • Kim, Seungjun;Won, Deok-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.99-110
    • /
    • 2017
  • This paper presents the study of the bending behavior of mooring chain links for keeping the position of the offshore floating structures. In general, chain links have been thought as the axial members due to the fundamental boundary condition. But, the flexural stiffness can be induced to the contact surface between chain links when friction occurs at the surface of the chain links due to high tensile force. Especially, the mooring chains for offshore floating platforms are highly tensioned. If the floater suffers rotational motion and the mooring chain links are highly tensioned, the rotation between contact links, induced by the floater rotation, generates the bending moment and relevant stresses due to the unexpected bending stiffness. In 2005, the mooring chain links for the Girassol Buoy Platform were failed after just 5 months after facility installation, and the accident investigation research concluded the chain failure was mainly caused by the fatigue due to the unexpected bending stress fluctuation. This study investigates the pattern of the induced bending stiffness and stresses of the highly tensioned chain links by nonlinear finite element analysis.

A Research on Dynamic Tension Response of Model Mooring Chain by Forced Oscillation Test (강제동요 시험을 이용한 모형 계류삭의 동적 응답 연구)

  • Cho, Seok-Kyu;Hong, Sa-Young;Hong, Sup;Kim, Hyun-Joe
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2005
  • A series of forced oscillation tests on a model mooring chain was carried out to investigate dynamic tension characteristics. The model test was conducted at two different water depths to gather basic data for a 'truncated mooring test' and 'hybrid mooring test'. The truncated and hybrid mooring tests are important for overcoming the limitation of water depth that existed in previous model tests. The resultant tension RAO provides a good possibility of approximation of dynamic tension by equivalent weight adjustment for different water depths. Because the hybrid mooring test is an adequate combination of model test and simulation, an accurate simulation model for the mooring system is essential. The simulation results show good agreement with model test results.

A Research on Dynamic Tension Response of Model Mooring Chain by Forced Oscillation Test (강제동요 시험을 이용한 모형 계류삭의 동적 응답 연구)

  • Kim, Hyun-Joe;Hong, Sa-Young;Hong, Sup;Cho, Suk-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.134-141
    • /
    • 2002
  • A series of forced oscillation test on model mooring chain was carried out to investigate dynamic tension characteristics. The model test was conducted at two different water depth to gather basic data for 'truncated mooring test' and 'hybrid mooring test'. The truncated and hybrid mooring test are highly recommended to overcome the limitation of water depth in model test recently. The resultant tension RAO gives good possibility of approximation of dynamic tension by equivalent weight adjustment for the ratio of water depth in different water depth. Because the hybrid mooring test is the adequate combination of model test and simulation, accurate simulation model on mooring system is essential. The simulation results show good agreement with model test results.

  • PDF

Mooring chain fatigue analysis of a deep draft semi-submersible platform in central Gulf of Mexico

  • Jun Zou
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.171-210
    • /
    • 2024
  • This paper focuses on the rigorous and holistic fatigue analysis of mooring chains for a deep draft semi-submersible platform in the challenging environment of the central Gulf of Mexico (GoM). Known for severe hurricanes and strong loop/eddy currents, this region significantly impacts offshore structures and their mooring systems, necessitating robust designs capable of withstanding extreme wind, wave and current conditions. Wave scatter and current bin diagrams are utilized to assess the probabilistic distribution of waves and currents, crucial for calculating mooring chain fatigue. The study evaluates the effects of Vortex Induced Motion (VIM), Out-of-Plane-Bending (OPB), and In-Plane-Bending (IPB) on mooring fatigue, alongside extreme single events such as 100-year hurricanes and loop/eddy currents including ramp-up and ramp-down phases, to ensure resilient mooring design. A detailed case study of a deep draft semi-submersible platform with 16 semi-taut moorings in 2,500 meters of water depth in the central GoM provides insights into the relative contributions of wave scatter diagram, VIMs from current bin diagram, the combined stresses of OPB/IPB/TT and extreme single events. By comparing these factors, the study aims to enhance understanding and optimize mooring system design for safety, reliability, and cost-effectiveness in offshore operations within the central GoM. The paper addresses a research gap by proposing a holistic approach that integrates findings from various contributions to advance current practices in mooring design. It presents a comprehensive framework for fatigue analysis and design optimization of mooring systems in the central GoM, emphasizing the critical importance of considering environmental conditions, OPB/IPB moments, and extreme single events to ensure the safety and reliability of mooring systems for offshore platforms.

Study on Mooring System Design of Floating Offshore Wind Turbine in Jeju Offshore Area

  • Kim, Hyungjun;Jeon, Gi-Young;Choung, Joonmo;Yoon, Sung-Won
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.209-217
    • /
    • 2013
  • This paper presents a mooring design procedure for a floating offshore wind turbine. Offshore environmental data for Jeju are taken from KHOA (Korea Hydrographic and Oceanographic Administration) and used for the environmental conditions in numerical analyses. A semi-submersible-type floating wind system with a 5-MW-class wind turbine studied by the DeepCwind Consortium is applied. Catenary mooring with a studless chain is chosen as the mooring system. Design deliverables such as the nominal sizes of chain and length of the mooring line are decided by considering the long-term prediction of the breaking strength of the mooring lines where a 100-year return period is used. The designed mooring system is verified using a fatigue calculation based on rain-flow cycle counting, an S-N curve, and a Miner's damage summation of rule. The mooring tension process is obtained from time-domain motion analyses using ANSYS/AQWA.

A Study on Out-of-Plane Bending Mechanism of Mooring Chains for Floating Offshore Plants (부유식 해양플랜트 계류 체인의 면외굽힘 거동에 대한 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo;Kang, Chan-Hoe
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.580-588
    • /
    • 2010
  • OPB(out-of-plane bending)-induced failure of mooring chain was firstly addressed by CALM (catenary anchor leg mooring)-type offloading buoy, located approximately one mile away from the bow of the Girassol FPSO which was installed offshore area of Angola in September 2001. This study deals with verifying the load transfer mechanism between the first free chain link and connected two chain links inside the chain hawse. OPB moment to angle variation relationships are proposed by extensive parametric study where the used design variables are static friction coefficients, proof test loads, nominal tension forces, chain link diameters, chain link grades and chain link types. The stress ranges due to OPB moments are obtained using nonlinear FEAs (finite element analyses). Final stress ranges are derived considering ones from IPT (in-plane tension) forces. Also a formula for OPB fatigue assessment is briefly introduced.

An Analytical Investigation on the Cause for Mooring Chain Cut in a Naval Moored to a Buoy (부표계류 함정의 계류체인 절단원인에 관한 분석적 연구)

  • Lim, Bong Taeck
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.551-555
    • /
    • 2009
  • This study analyzed the cause for mooring chain cut in a naval ship moored, in preparation for a typhoon approach, to a buoy in a shelter. The result of the analysis led to a very interesting fact. That is, while officers usually understood the cut results from the fact that the wind and the tide were stronger than what the mooring chain can hold, according to the study, it was analyzed the impact power at the point where the mooring chain and the ship's body met was a main factor in the cut. Also, it was confirmed that the analytic result of the study is more logical from the point of mathematical analysis and that the cut corresponds to what the then-witnesses stated about the situation.

  • PDF

Extreme Mooring Analysis of Turret Moored LNG-FSRU (터렛 계류된 LNG-FSRU의 극한 계류 해석)

  • Lee, Min-Kyeong;Jung, Kwang-Hyo;Park, Sung-Boo;Yu, Byeong-Seok;Chung, Yun-Suk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.435-446
    • /
    • 2016
  • In this study, hydrodynamic and mooring analysis for LNG FSRU moored by an internal turret with 9 mooring lines are numerically performed using commercial softwares, Hydrostar and Ariane. Met-ocean combinations for screening method are taken from wave governed condition(BV Rule Note NR 493) with relative heading between wave and wind between −45° and +45° and relative heading between wind and current between −30° and +30°. Extreme mooring analysis and sensitivity analysis are performed for intact and damaged (=one line missing) conditions and the parameters for sensitivity analysis are wave peak period, peak enhancement factor and line pretension. In the viewpoint of the design tension in mooring line, chain diameter is designed to satisfy safety factor for each conditions. As the chain diameter is increased from 152mm to 171mm, the designtension is reduced while the minimum breaking load is increased.

Nonlinear Finite Element Analysis for Mooring Chain Considering OPB/IPB (OPB/IPB를 고려한 계류체인의 비선형 수치해석)

  • Kim, Min-suk;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.299-307
    • /
    • 2017
  • The design of the mooring line to maintain the position of an offshore structure in rough marine environments is recognized as a very important consideration. Conventional fatigue evaluation of a mooring line was performed by considering the tensile force acting on the mooring line, but the mooring line broke after 238 days in the girassol area even though the expected fatigue life was expected to be longer. The causes of this event are known to be due to OPB/IPB (out-of-plane bending/in-plane bending) caused by chain link friction due to the excessive tensile strength of the mooring line. In this study, three models with different boundary conditions were proposed for fatigue analysis of a mooring line considering OPB/IPB. Interlink stiffness was calculated by nonlinear structure analysis and a stress concentration factor was derived. In addition, the sensitivity of interlink stiffness according to the magnitude of tensile force, large deformation effect, and coefficient of friction was analyzed, and the effect of critical elastic slip and bending moment calculation position on interlink stiffness was confirmed.