Precipitation variability around King Sejong Station related with E1 $Ni\~{n}o$/Southern Oscillation (ENSO) is evaluated using the gauge-based monthly data of its neighboring stations. Though three Ant-arctic Stations of King Sejong (Korea), Frei (Chile), and Artigas (Uruguay) are all closely located within 10 km, their precipitation data show mostly insignificant positive or rather negative correlations among them in the annual, seasonal and monthly precipitation. This result indicates that there are locally large variations in the distribution of precipitation around King Sejong Station. The monthly data of Frei Station for 31 years (1970-2000) are analyzed for examining the ENSO signal in precipitation because of its longer precipitation record compared to other two stations. From the analysis of seasonal precipitation, it is seen that there is a tendency of less precipitation than the average during E1 $Ni\~{n}o$ events. This dryness is more distinct in fall to spring seasons, in which the precipitation decreases down to about 30% of seasonal mean precipitation. However, the precipitation signal related with La $Ni\~{n}a$ events is not significant. From the analysis of monthly precipitation, it is found that there is a strong negative correlation during 1980s and in the late 1990s, and a weak positive correlation in the early 1990s between normalized monthly precipitation at Frei Station and Sea Surface Temperature (SST) anomalies in the $Ni\~{n}o$ 3.4 region. However, this relation may be not applied over the region around King Sejong Station, but at only one station, Frei.
The spatial distribution of precipitation trends according to urbanization, geographical and topographical conditions have been studied. In this study, precipitation data from 1973 to 2006 were analyzed for 56 climatological stations including the Seoul metropolis in South Korea. In addition to annual average daily precipitation, monthly average daily precipitation in April, July, October and January were analyzed, considering seasonal effect. The geographical and topographical characteristics of these sites were examined using GIS analysis. Land use status of the study area was also examined to estimate the extent of urbanization. The study results indicate that annual average precipitation increased, and monthly average precipitation in April and October decreased, while those in January and July increased. Considering urbanization effect, annual average precipitation and monthly average precipitation in July increased; however, monthly average precipitation in January, April and October decreased. Furthermore, compared with urbanization rate and proximity to coast, average elevation of study area appeared to be the most close correlation with annual and monthly averages of precipitation trends.
Journal of The Korean Society of Agricultural Engineers
/
v.53
no.3
/
pp.1-11
/
2011
The temporal variability of spring (March, April, May) monthly precipitation, precipitation effectiveness, monthly maximum precipitation, monthly precipitation of different durations, and the precipitation days over several threshold (i.e. 0, 10, 20, 30, 40, and 50 mm/day) of 59 weather stations between 1973 and 2009 were analyzed. Also to analyze the regional characteristics of temporal variability, 59 weather stations were classified by elevations, latitudes, longitudes, river basins, inland or shore (east sea, south sea, west sea) area and the level of urbanization. Results demonstrated that trends of variables increase in April and decrease in May except precipitation day. Overall trend of precipitation amount and precipitation effectiveness is same but precipitation effectiveness of several sites decrease despite the trend of precipitation amount increases which may be caused by the air temperature increase. Therefore more effective water supply strategy is essential for Spring season. Regional characteristics of Spring precipitation variability can be summarized that increase trend during May become stronger with the increase of latitude and elevation which is similar to that of Summer season. The temporal variability of variables showed different behaviors according to river basins, inland or shore (east sea, south sea, west sea) area and the level of urbanization.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1260-1264
/
2009
Precipitation time series is a mixture of complicate fluctuation and changes. The monthly precipitation data of 61 stations during 36 years (1973-2008) in Korea are comprehensively analyzed using the EOFs technique and CSEOFs technique respectively. The main motivation for employing this technique in the present study is to investigate the physical processes associated with the evolution of the precipitation from observation data. The twenty-five leading EOF modes account for 98.05% of the total monthly variance, and the first two modes account for 83.68% of total variation. The first mode exhibits traditional spatial pattern with annual cycle of corresponding PC time series and second mode shows strong North South gradient. In CSEOF analysis, the twenty-five leading CSEOF modes account for 98.58% of the total monthly variance, and the first two modes account for 78.69% of total variation, these first two patterns' spatial distribution show monthly spatial variation. The corresponding mode's PC time series reveals the annual cycle on a monthly time scale and long-term fluctuation and first mode's PC time series shows increasing linear trend which represents that spatial and temporal variability of first mode pattern has strengthened. Compared with the EOFs analysis, the CSEOFs analysis preferably exhibits the spatial distribution and temporal evolution characteristics and variability of Korean historical precipitation.
Normally at a flood season the operation of the dam depends on a short range weather forecast that makes many difficulties of the management at a dry season. It is needed to study the pattern of the long period rainfall. The concept of PMP(Probable Maximum Precipitation) was used for designing dam. From the concept, this study is applied the concept of monthly probable maximum precipitation for operating dam. It can be possible to let us know the appropriateness of a limiting water level at a rainy season. For the operation of dam at a dry season this study can predict roughly the flood season's pattern of precipitation by month or period, therfore the prediction of precipitation can rise efficient operation of a dam.
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.2B
/
pp.237-248
/
2008
Precipitation variability in Korea is mainly influenced by climate circulation such as sea surface temperature, not a local convection. Therefore, this study investigates relationship between monthly precipitation of 61 station observed by Korea Meteorological Administration and global sea surface temperatures (SSTs). The main components of monthly precipitation in Korea are extracted by a method which consists of the principal analysis combined with the cluster analysis, to examine the correlation between monthly rainfalls and SSTs. The relationships between main components of monthly precipitation and SSTs exists in Pacific Ocean. At the result of Wavelet Transform analysis, The 2-4 year band have a strong wavelet power spectrum and the low frequency. the correlation coefficient between low frequency components of monthly rainfalls and SSTs calculated bigger then correlation coefficient between main components and SSTs. Hence, these results propose a prediction possibility of monthly precipitations using the varition of SSTs.
The climatological characteristics of the area averaged monthly precipitation over the Han- and Nakdong-river basins were investigated. The data used for this study is monthly precipitation data from 51 meteorological stations for the period of 1954 to 2002. The magnitude of area averaged precipitation in the Han-river basin was about 10% larger than that in the Nakdong-river basin. However, the variability of two monthly precipitation time series exhibited similar characteristics: April precipitation tends to decrease and August precipitation increase significantly, while there was no significant trend for the other months. There were some indications of abrupt change around the 1970's in the periodicity of precipitation and relationship with El Nino index. September precipitation showed negative correlation with NINO3 index but November precipitation, positive correlation with NINO3 index, indicating a possible connection with the global-scale phenomena.
Journal of the Korean Society of Hazard Mitigation
/
v.9
no.6
/
pp.17-30
/
2009
In this study, the existence of possible deterministic longterm trend of precipitation amount, monthly maximum precipitation, rain day, the number of rain day greater than 20mm, 30mm, and 80mm was analyzed using the Mann-Kendall rank test and the data from 62 stations between 1905 and 2004 in South Korea. Results indicate that the annual and monthly rainfall amount increases and the number of rain days which have more than 80mm rainfall a day, increases. However the number of rain days decreases. Also, monthly trend analysis of precipitation amount and monthly maximum precipitation increases in Jan., May, Jun., Jul., Aug., and Sep. and they decrease in Mar., Apr., Oct., Nov., and Dec. Monthly trend of the number of rain day greater than 20mm, 30mm, and 80mm increases in Jun., Jul., Aug., and Sep. However results of Mann-Kedall test demonstrated that the ratio of stations, which have meaningful longterm trend in the significance level of 90% and 95%, is very low. It means that the random variability of the analyzed precipitation related data is much greater than their linear increment.
Kim, Seong-Won;Kyoung, Min-Soo;Kwon, Hyun-Han;Kim, Hyung-Soo
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.112-115
/
2009
The research of climate change impact in hydrometeorology often relies on climate change information. In this paper, neural networks models such as support vector machine neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM) are proposed statistical downscaling of the monthly precipitation. The input nodes of neural networks models consist of the atmospheric meteorology and the atmospheric pressure data for 2 grid points including $127.5^{\circ}E/35^{\circ}N$ and $125^{\circ}E/35^{\circ}N$, which produced the best results from the previous study. The output node of neural networks models consist of the monthly precipitation data for Seoul station. For the performances of the neural networks models, they are composed of training and test performances, respectively. From this research, we evaluate the impact of SVM-NNM and MLP-NNM performances for the downscaling of the monthly precipitation data. We should, therefore, construct the credible monthly precipitation data for Seoul station using statistical downscaling method. The proposed methods can be applied to future climate prediction/projection using the various climate change scenarios such as GCMs and RCMs.
This paper aims to know the characteristics of occurrence of the anomaly level and variability of the monthly precipitation in Kyeongnam, Korea. For this study, it was investigated 주e distribution of the annual and cont비y mean precipitation, the precipitation variability and its annual change, and the characteristics of occurrence of the anomaly level in Kyeongnam area the results were summarized as follows : 1) she mean of annual total precipitation averaged over Kyeongnam area is 1433.3mm. I'he spatial distribution of the annual total precipitation shows that in Kyeongnam area, the high rainfall area locates in the southwest area and south coast and the low rainfall area in an inland area. 2) Monthly mean precipitation in llyeongnam area was the highest in July(266.4mm) 각lowed by August(238.0mm), June(210.2mm) in descending order. In summer season, rainfall was concentrated and accounted for 49.9 percent of the annual total precipitation. Because convergence of the warm and humid southwest current which was influenced by Changma and typhoon took place well in this area. 3) The patterns of annual change of precipitaion variability can be divided into two types; One is a coast type and the other an inland type. The variability of precipitation generally appears low in spring and summer season and high in autumn and winter season. This is in accord with the large and small of precipitation. 4) The high frequency of anomaly level was N( Normal)-level and the next was LN( Low Informal) -level and 25(Extremely Subnormal)-level was not appeared in all stations. The occurrence frequency of N level was high in high rainfall area and distinguish성 in spring and summer season but the low rainfall area was not. hey Words : anomaly level, variability, precipitation, coast type, inland type.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.