• 제목/요약/키워드: Monte carlo analysis

검색결과 1,776건 처리시간 0.027초

ON SOME OUTSTANDING PROBLEMS IN NUCLEAR REACTOR ANALYSIS

  • Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제44권2호
    • /
    • pp.207-224
    • /
    • 2012
  • This article discusses selects of some outstanding problems in nuclear reactor analysis, with proposed approaches thereto and numerical test results, as follows: i) multi-group approximation in the transport equation, ii) homogenization based on isolated single-assembly calculation, and iii) critical spectrum in Monte Carlo depletion.

몬테카를로 시뮬레이션을 이용한 일방향 복합재의 강도평가 및 파손 해석 (Strength Evaluation and Eailure Analysis of Unidirectional Composites Using Monte-Carlo Simulation)

  • 김정규;박상선;김철수;김일현
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2917-2925
    • /
    • 2000
  • Tensile strength and failure process of composite materials depend on the variation in fiber strength, matrix properties and fiber-matrix interfacial shear strength. A Monte-Carlo simulation considering variation in these factors has been widely used to analyze such a complicated phenomenon as a strength and simulated the failure process of unidirectional composites. In this study, a Monte Carlo simulation using 2-D and 3-D(square and hexagonal array) model was performed on unidirectional graphite/epoxy and glass/polyester composites. The results simulated by using 3-D hexagonal array model have a good agreement with the experimental data which were tensile strength and failure process of unidirectional composites.

A Lattice-Based Monte Carlo Evaluation of Canada Deuterium Uranium-6 Safety Parameters

  • Kim, Yonghee;Hartanto, Donny;Kim, Woosong
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.642-649
    • /
    • 2016
  • Important safety parameters such as the fuel temperature coefficient (FTC) and the power coefficient of reactivity (PCR) of the CANada Deuterium Uranium (CANDU-6) reactor have been evaluated using the Monte Carlo method. For accurate analysis of the parameters, the Doppler broadening rejection correction scheme was implemented in the MCNPX code to account for the thermal motion of the heavy uranium-238 nucleus in the neutron-U scattering reactions. In this work, a standard fuel lattice has been modeled and the fuel is depleted using MCNPX. The FTC value is evaluated for several burnup points including the mid-burnup representing a near-equilibrium core. The Doppler effect has been evaluated using several cross-section libraries such as ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1.1, and JENDL-4.0. The PCR value is also evaluated at mid-burnup conditions to characterize the safety features of an equilibrium CANDU-6 reactor. To improve the reliability of the Monte Carlo calculations, we considered a huge number of neutron histories in this work and the standard deviation of the k-infinity values is only 0.5-1 pcm.

Time-dependent analysis of cable trusses -Part II. Simulation-based reliability assessment

  • Kmet, S.;Tomko, M.;J., Brda
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.171-193
    • /
    • 2011
  • One of the possible alternatives of simulation-based time-dependent reliability assessment of pre-stressed biconcave and biconvex cable trusses, the Monte Carlo method, is applied in this paper. The influence of an excessive deflection of cable truss (caused by creep of cables and rheologic changes) on its time-dependent serviceability is investigated. Attention is given to the definition of the basic random variables and their statistical functions (basic, mutually dependent random variables such as the pre-stressing forces of the bottom and top cable, structural geometry, the Young's modulus of elasticity of the cables, and the independent variables, such as permanent load, wind, snow and thermal actions). Then, the determination of the response of the cable truss to the loading effects, and the definition of the limiting values considering serviceability of the structure are performed. The potential of the method, using direct Monte Carlo technique for simulation-based time-dependent reliability assessment as a powerful tool, is emphasized. Results obtained by the First order reliability method (FORM) are compared with those obtained by the Monte Carlo simulation technique.

$CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구 (Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar)

  • 김상남
    • 전기학회논문지P
    • /
    • 제56권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

시장위험에 대한 금융자산의 종합적 위험관리(VaR모형 중심) (A study on synthetic risk management on market risk of financial assets(focus on VaR model))

  • 김종권
    • 산업경영시스템학회지
    • /
    • 제22권49호
    • /
    • pp.43-57
    • /
    • 1999
  • The recent trend is that risk management has more and more its importance. Neverthless, Korea's risk management is not developed. Even most banks does gap, duration in ALM for risk management, development and operation of VaR stressed at BIS have elementary level. In the case of Fallon and Pritsker, Marshall, gamma model is superior to delta model and Monte Carlo Simulation is improved at its result, as sample number is increased. And, nonparametric model is superior to parametric model. In the case of Korea's stock portfolio, VaR of Monte Carlo Simulation and Full Variance Covariance Model is less than that of Diagonal Model. The reason is that VaR of Full Variance Covariance Model is more precise than that of Diagonal Model. By the way, in the case of interest rate, result of monte carlo simulation is less than that of delta-gamma analysis on 95% confidence level. But, result of 99% is reversed. Therefore, result of which method is not dominated. It means two fact at forecast on volatility of stock and interest rate portfolio. First, in Delta-gamma method and Monte Carlo Simulation, assumption of distribution affects Value at Risk. Second, Value at Risk depends on test method. And, if option price is included, test results will have difference between the two. Therefore, If interest rate futures and option market is open, Korea's findings is supposed to like results of other advanced countries. And, every banks try to develop its internal model.

  • PDF

Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC

  • Wang, Zhenyu;Liu, Shichang;She, Ding;Su, Yang;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.430-438
    • /
    • 2021
  • The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method.

횡성댐 상류유역에 대한 수질관리모형의 적용 (Application of Water-Quality Management Model for Upstream Basin of Hoengsung Dam)

  • 김상호;이을래
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.239-246
    • /
    • 2008
  • In this study, an optimized deterministic water-quality model was constructed to estimate water quality of a river and lake in the upstream basin of a dam. A stochastic water-quality analysis using reliability analysis technique was applied to the model. The model was tested in the 13.9 km reach from Maeil stage station of Kyechun to Hoengsung Dam of Sum River. After finding hydraulic characteristics from nonuniform flow analysis, Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization technique for model calibration was applied to determine optimum reaction parameters, and model verification was performed based on these. The stochastic model, using Mean First­Order Second­-Moment (MFOSM) and Monte-Carlo methods, was applied to the same reach as the deterministic study. Variations of discharge and water quality in headwater were considered, as well as variations of hydraulic coefficients and reaction coefficients. The statistical results of output variables from MFOSM were similar to those from the Monte-Carlo method. Risk analysis using MFOSM and Monte-Carlo methods presented the probabilities of some locations in the Hoengsung Lake violating existing water-quality standards in terms of DO and BOD.

Structural Reliability of Thick FRP Plates subjected to Lateral Pressure Loads

  • Hankoo Jeong;R. Ajit Shenoi;Kim, Kisung
    • Journal of Ship and Ocean Technology
    • /
    • 제4권2호
    • /
    • pp.38-57
    • /
    • 2000
  • This paper deals with reliability analysis of specially orthotropic plates subjected to transverse lateral pressure loads by using Monte Carlo simulation method. The plates are simply supported around their all edges and have a low short span to plate depth ratio with rectangular plate shapes. Various levels of reliability analyses of the plates are performed within the context of First-Ply-Failure(FPF) analysis such as ply-/laminate-level reliability analyse, failure tree analysis and sensitivity analysis of basic design variables to estimated plate reliabilities. In performing all these levels of reliability analyses, the followings are considered within the Monte Carlo simulation method: (1) input parameters to the strengths of the plates such as applied transverse lateral pressure loads, elastic moduli, geometric including plate thickness and ultimate strength values of the plates are treated as basic design variables following a normal probability distribution; (2) the mechanical responses of the plates are calculated by using simplified higher-order shear deformation theory which can predict the mechanical responses of thick laminated plates accurately; and (3) the limit state equations are derived from polynomial failure criteria for composite materials such as maximum stress, maximum strain, Tsai-Hill, Tsai-Wu and Hoffman.

  • PDF

유한요소법과 몬테카를로법을 이용한 X선 튜브에서 전자빔 충격에 의한 열 발생 해석 (Analysis of Heat Generation Induced by Electron Impact in X-Ray Tube Using FEM and Monte Carlo Method)

  • 김흥배;유태재
    • 한국정밀공학회지
    • /
    • 제32권4호
    • /
    • pp.387-394
    • /
    • 2015
  • We analyze heat generation as well as temperature distribution induced by accelerated electron impact on a target in a closed x-ray tube. For the sake of accuracy, we use Monte carlo analysis. This method gives accurate energy deposit in a medium with additional information such as secondary and backscattered electron as well as their paths. A Tungsten coated layer is divided by small rectangular cell which accumulate energy loss of primary electron beam. The cells and their accumulated energy datum are used for the input of finite element analysis. The Maximum temperature rising and temperature distribution were analyzed by transient heat analysis. Some temperature parameters such as target size and coating thickness were varied to investigate temperature sensitivity. Temperatures were compared each other to find primary variable that affect temperature rising on the x-ray target. The results will be helpful in development highresolution x-ray tube and related industries.