• 제목/요약/키워드: Monte Carlo simulation code

검색결과 274건 처리시간 0.03초

Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

  • Kim, Wonkyeong;Lee, Hyun Chul;Pyeon, Cheol Ho;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.304-317
    • /
    • 2016
  • An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcrofte-Walton type accelerator, which generates the external neutron source by deuteriu-metritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

Does mudcake change the results of modeling gamma-gamma well-logging?

  • Rasouli, Fatemeh S.
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3390-3397
    • /
    • 2022
  • Among the different techniques available, nuclear methods, including gamma-gamma logging tools, are of special importance. Though the real environment which surrounds the drilled borehole is a complex fractured medium which the fluid can flow through the porosities, simulation studies generally use the traditional model of a homogeneous mixture of formation and the liquid. Considering a previously published study, which shows that modeling of fluid flow in fractured reservoirs and simulating the formation as an inhomogeneous fractured medium leads to different results compared with those of homogeneous mixture, here we study the effect of the presence of drilling fluid (mudcake) on the response of the detectors in both the models. To study this effect, a typical gamma-gamma logging tool was modeled by using the MCNPX Monte Carlo code. The results show that the responses of the detectors in the mixture model in the presence of various thicknesses of mudcake are sensitive to the density of the formation material. However, this effect is not notable in the inhomogeneous fractured medium. These results emphasize the importance of the model employed for simulation of the medium in gamma-gamma well-logging.

몬테칼로 방법에 의한 차폐체 건전성 검증코드 개발 (GESS-A Code for Verification of Shielding Integrity by Monte Carlo Method)

  • 이태영;하정우;이재기
    • Journal of Radiation Protection and Research
    • /
    • 제11권1호
    • /
    • pp.29-36
    • /
    • 1986
  • 본 연구에서는 NaI검출기에서 감마스펙트럼 시뮤레이션 코드인 GESS를 개발하였다. 감마선에 의한 모든 상호작용이 시뮤레이션 과정에서 고려되었으며, 생성된 하전입자의 스펙트럼은 CSDA 모델에 기반을 두어 계산하였다. 매질내에서 입자 수송에 대한 해석수단으로는 몬테칼로 방법을 적용하였다. 코드의 검증을 위하여 1.33MeV의 입사 감마선에 대한 스펙트럼이 본 연구에서 개발된 코드에 의해 계산되었으며, 계산된 스펙트럼은 대체적으로 실험에서 얻은 스펙트럼과 거의 동일한 분포를 나타내고 있다.

  • PDF

Thermodynamic non-equilibrium and anisotropy in Mars atmosphere entry

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • 제8권1호
    • /
    • pp.1-15
    • /
    • 2021
  • Mars exploration demands aerodynamic computations for a proper design of missions of spacecraft carrying instruments and astronauts to Mars. Both Computational Fluid Dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) method play a key role for this purpose. To the author's knowledge, the altitude separating the fields of applicability of CFD and DSMC in Mars atmosphere entry is not yet clearly defined. The limitations in using DSMC at low altitudes are due to technical limitations of the computer. The limitations in using CFD at high altitudes are due to thermodynamic non-equilibrium. Here, this problem is studied in Mars atmosphere entry, considering the Mars Pathfinder capsule in the altitude interval 40-80 km, by means of a DSMC code. Non-equilibrium is quantified by the relative differences between translational temperature and: rotational (θt-r), vibrational (θt-v), overall (θt-ov) temperatures, anisotropy is quantified by the relative difference between the translational temperature component along x and those along y (θx-y) and along z (θx-z). The results showed that θt-r, θt-v, θx-y, θx-z are almost equivalent. The altitude of 45 km should be the limit altitude for a proper use of a CFD code and the altitude of 40 km should be the limit altitude for a reasonable use of a DSMC code.

MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

  • Kelly, Daniel J. III;Kelly, Ann E.;Aviles, Brian N.;Godfrey, Andrew T.;Salko, Robert K.;Collins, Benjamin S.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1326-1338
    • /
    • 2017
  • The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL) tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of $0.99994{\pm}6.8E-6$ (95% confidence interval). Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

Impacts of Non-Uniform Source on BER for SSC NOMA (Part I): Optimal MAP Receiver's Perspective

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권4호
    • /
    • pp.39-47
    • /
    • 2021
  • Lempel-Ziv coding is one of the most famous source coding schemes. The output of this source coding is usually a non-uniform code, which requires additional source coding, such as arithmetic coding, to reduce a redundancy. However, this additional source code increases complexity and decoding latency. Thus, this paper proposes the optimal maximum a-posteriori (MAP) receiver for non-uniform source non-orthogonal multiple access (NOMA) with symmetric superposition coding (SSC). First, we derive an analytical expression of the bit-error rate (BER) for non-uniform source NOMA with SSC. Then, Monte Carlo simulations demonstrate that the BER of the optimal MAP receiver for the non-uniform source improves slightly, compared to that of the conventional receiver for the uniform source. Moreover, we also show that the BER of an approximate analytical expression is in a good agreement with the BER of Monte Carlo simulation. As a result, the proposed optimal MAP receiver for non-uniform source could be a promising scheme for NOMA with SSC, to reduce complexity and decoding latency due to additional source coding.

GEANT4 Medical Linac2 예제를 이용한 6 MV 선형가속기 광자선속의 기초특성과 연구방법 (Study on the 6 MV Photon Beam Characteristics and Analysis Method from Medical Linear Accelerators Using Geant4 Medical Linac2 Example)

  • 김병용;김형동;김성진;오세안;강정구;김성규
    • 한국의학물리학회지:의학물리
    • /
    • 제22권2호
    • /
    • pp.79-84
    • /
    • 2011
  • 본 연구에서는 GEANT4 toolkit을 이용하여 의료용 선형가속기에 대한 몬테칼로(Monte Carlo) 전산모사를 하였다. Medical Linac2 예제를 수정해서 사용하였다. 에너지스펙트럼, 최빈에너지, 평균에너지를 EGS4 결과와 비교 하였고 선속의 중심에서부터 반경에 따른 단위면적당 광자수, 단위면적당 에너지, 평균에너지를 분석하였다. 그 결과 EGS4 결과와 큰 차이를 보이지 않기 때문에 Medical Linac2 예제의 선속특성에 관한 전산모사에 큰 문제점은 없는 것으로 판단된다. 같은 헤드구조에서도 Physics List의 모델에 따라서는 결과에 차이가 발생하므로 연구 환경에 알맞은 Physics List 모델을 선택하는 것이 중요하다고 판단된다. 본 연구는 처음 몬테칼로 전산모사를 접하는 사용자가 선속특성에 대한 전산모사를 수행하고 6 MV 광자선속의 특성을 분석하는 과정에 많은 도움이 될 것으로 사료된다.

방사선치료의 Geant4 전산모사를 위한 DICOM 변환 프로그램 개발 (Development of DICOM Convert Program for the Geant4 Monte Carlo Simulation of the Radiotherapy)

  • 강정구;이동준
    • 한국의학물리학회지:의학물리
    • /
    • 제24권4호
    • /
    • pp.259-264
    • /
    • 2013
  • 방사선치료의 선량계산을 위해 Geant4 기반의 전산모사를 실행할 때 필요한 응용 프로그램을 개발 하였다. DICOM의 헤더 부분을 분석하여 각종 파라메터를 구하였다. 특히 배포 판에서의 문제점을 모두 해결하기 위해 클래스를 새로 정의하였다. 따라서 국내에 설치된 대부분의 DICOM 파일을 변환 할 수 있게 되었다. 픽셀 데이터의 변환 값을 확인하는 프로그램을 개발하여 정확성을 비교 하였다.

FracSys와 UDEC을 이용한 사면 파괴 양상 분석 통계적 절리망 생성 기법 및 Monte Carlo Simulation을 통한 사면 안정성 해석

  • 김태희;최재원;윤운상;김춘식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.651-656
    • /
    • 2002
  • In general, the most important problem in slope stability analysis is that there is no definite way to describe the natural three-dimensional Joint network. Therefore, the many approaches were tried to anlayze the slope stability. Numerical modeling approach is one of the branch to resolve the complexity of natural system. UDEC, FLAC, and SWEDGE are widely used commercial code for the purpose on stability analysis. For the purpose on the more appropriate application of these kind of code, however, three-dimensional distribution of joint network must be identified in more explicit way. Remaining problem is to definitely describe the three dimensional network of joint and bedding, but it is almost impossible in practical sense. Three dimensional joint generation method with random number generation and the results of generation to UDEC have been applied to settle the refered problems in field site. However, this approach also has a important problem, and it is that joint network is generated only once. This problem lead to the limitation on the application to field case, in practical sense. To get rid of this limitation, Monte Carlo Simulation is proposed in this study 1) statistical analysis of input values and definition of the applied system with statistical parameter, 2) instead of the consideration of generated network as a real system, generated system is just taken as one reliable system, 3) present the design parameters, through the statistical analysis of ouput values Results of this study are not only the probability of failure, but also area of failure block, shear strength, normal strength and failure pattern, and all of these results are described in statistical parameters. The results of this study, shear strength, failure area, pattern etc, can provide the direct basement on the design, cutoff angle, support pattern, support strength and etc.

  • PDF

Monte Carlo N-Particle Extended Code를 이용한 연 X선 정전기제거장치의 최적제작에 관한 연구(II) (A Study on the Optimal Make of X-ray Ionizer using the Monte Carlo N-Particle Extended Code(II))

  • 정필훈;이동훈
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.29-33
    • /
    • 2017
  • In order to solve this sort of electrostatic failure in Display and Semiconductor process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. There exist variable factors such as type of tungsten thickness deposited on target, Anode voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. Here, MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was compared according to target material thickness using MCNPX and actual X-ray tube source under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W). At the result, In Tube voltage 5 keV and distance 100 mm, optimal target thickness is $0.05{\mu}m$ and fastest decay time appears + decay time 0.28 sec. - deacy time 0.30 sec. In Tube voltage 10keV and distance 100 mm, optimal target Thickness is $0.16{\mu}m$ and fastest decay time appears + decay time 0.13 sec. - deacy time 0.12 sec. In the tube voltage 15 keV and distance 100 mm, optimal target Thickness is $0.28{\mu}m$ and fastest decay time appears + decay time 0.04 sec. - deacy time 0.05 sec.