• Title/Summary/Keyword: Monte Carlo simulation code

Search Result 278, Processing Time 0.029 seconds

ANALYSIS BY SYNTHESIS FOR ESTIMATION OF DOSE CALCULATION WITH gMOCREN AND GEANT4 IN MEDICAL IMAGE

  • Lee, Jeong-Ok;Kang, Jeong-Ku;Kim, Jhin-Kee;Kim, Bu-Gil;Jeong, Dong-Hyeok
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.146-148
    • /
    • 2012
  • The use of GEANT4 simulation toolkit has increased in the radiation medical field for the design of treatment system and the calibration or validation of treatment plans. Moreover, it is used especially on calculating dose simulation using medical data for radiation therapy. However, using internal visualization tool of GEANT4 detector constructions on expressing dose result has deficiencies because it cannot display isodose line. No one has attempted to use this code to a real patient's data. Therefore, to complement this problem, using the result of gMocren that is a three-dimensional volume-visualizing tool, we tried to display a simulated dose distribution and isodose line on medical image. In addition, we have compared cross-validation on the result of gMocren and GEANT4 simulation with commercial radiation treatment planning system. We have extracted the analyzed data of dose distribution, using real patient's medical image data with a program based on Monte Carlo simulation and visualization tool for radiation isodose mapping.

Modeling and Simulation on Ion Implanted and Annealed Indium Distribution in Silicon Using Low Energy Bombardment (낮은 에너지로 실리콘에 이온 주입된 분포와 열처리된 인듐의 거동에 관한 시뮬레이션과 모델링)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.750-758
    • /
    • 2016
  • For the channel doping of shallow junction and retrograde well formation in CMOS, indium can be implanted in silicon. The retrograde doping profiles can serve the needs of channel engineering in deep MOS devices for punch-through suppression and threshold voltage control. Indium is heavier element than B, $BF_2$ and Ga ions. It also has low coefficient of diffusion at high temperatures. Indium ions can be cause the erode of wafer surface during the implantation process due to sputtering. For the ultra shallow junction, indium ions can be implanted for p-doping in silicon. UT-MARLOWE and SRIM as Monte carlo ion-implant models have been developed for indium implantation into single crystal and amorphous silicon, respectively. An analytical tool was used to carry out for the annealing process from the extracted simulation data. For the 1D (one-dimensional) and 2D (two-dimensional) diffused profiles, the analytical model is also developed a simulation program with $C^{{+}{+}}$ code. It is very useful to simulate the indium profiles in implanted and annealed silicon autonomously. The fundamental ion-solid interactions and sputtering effects of ion implantation are discussed and explained using SRIM and T-dyn programs. The exact control of indium doping profiles can be suggested as a future technology for the extreme shallow junction in the fabrication process of integrated circuits.

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.

Estimation of Extreme Wind Speeds in Korean Peninsula using Typhoon Monte Carlo Simulation (태풍 시뮬레이션을 통한 한반도 극한풍속 추정)

  • Lee, Sungsu;Kim, Ga Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • The long-span bridges such as Incheon Bridge and Seohae Grand Bridge are located on the coastal region effected frequently by strong wind of typhoons. In order to ensure the wind-resistant performance of the structure, estimation of the proper design wind speed is very important. In this study, stochastic estimation of design wind speed incurred by typhoons is carried out. For this purpose, we first established probability distribution of climatological parameters such as central pressure depth, distance of closest approach, translation speed and heading to build statistical model of typhoons, which are employed in Monte Carlo simulation for hypothetical typhoons. Once a typhoon is generated with statistically justified parameters, wind speeds are estimated along its path using wind field model. Thousands of typhoons are generated and their peak wind speeds are utilized to establish the extreme wind speeds for different return period. The results are compared with design basic wind speeds in Korean Highway Bridge Design Code, showing that the present results agree well with similar studies while the existing code suggests higher design wind speed.

A Study on the Simulation and the Measurement of 6 MeV electron Beam (6 MeV 전자선의 측정과 모의계산에 대한 연구)

  • Lee Sung Ah;Lee Jeong Ok;Moon Sun Rock;Won Jong Jin;Kang Jeong Ku;Kim Seung Kon
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 1995
  • Purpose : We compared the calcualted percent depth dose curves of 6 MeV electron beam to that of measured to evaluate the usefulness of Monte-carlo simulation method in radiation physics. Materials and Methods : The radiation dose values of 6 MeV electron beam using EGS4 code with one million histories in water were compared values that were measured from the depth dose curve of electron beam irradiated by medical accelerator ML6M. The central axis dose values were calculated according to the changing field size. such as $5{\times}5,\;10{\times}10,\;15{\times}15,\;20{\times}20cm^2$. Results : The value calculated showed a very similar shape to depth dose curve. The calculated and measured value of $D_max$ at $10{\times}10cm^2$ cone is 15mm and 14mm respectively. The calculated value of the surface radiation dose rate is $65.52\%$ and measured one is $76.94\%$. The surface radiation dose rate has varied from $64.43\%$ to $66.99\%$. The calculated values of $D_max$ are in the range between 15mm and 18mm. The calculated value was fitted well with measured value around the $D_max$ area, excluding build up range and below the $90\%$ depth dose area. Conclusion : This result suggested that the calculation of dose value can be replace the direct measurement of the dose for radiation therapy. Also, EGS4 may be a very convenient program to assess the effect of radiation dose using by personal computers.

  • PDF

Development of Probabilistic Risk Analysis Model on Railroad System - Its Application to Tunnel Fire Risk Analysis (철도시스템의 확률론적 위험평가 모델 개발 연구 - 터널화재 위험도 평가에의 적용)

  • Kwak Sang Log;Wang Jong Bae;Hong Seon Ho;Kim Sang Am
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.265-270
    • /
    • 2003
  • Though the probability of tunnel fire accident is very low, but critical fatalities are expected when it occurred. In this study the effect of critical safety parameters on tunnel fire accident are examined using probabilistic technique. Fire detection time, smoke spread velocity, passenger escape velocity, flash-over time, and emergency service arrival time are considered. In order to estimate the uncertainties of input parameters Monte Carlo simulation are used, and fatalities for each assumed accident scenarios are obtained as results. For the efficiency of iterative calculation PRA(Probabilistic Risk Analysis) code is developed in this study. As a result fire detection have large effect.

  • PDF

Reliability-based Model of Durability Failure for Harbor Concrete Structure (항만 콘크리트 구조물의 내구성 파괴확률 예측을 위한 신뢰성 모델)

  • Han, Sang-Hun;Park, Woo-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.471-474
    • /
    • 2005
  • Reliability-based durability model was developed to consider the uncertainty of analysis variables in durability model for harbor concrete structures. The durability analysis program based on Finite Element Method (FEM) was modified adopting the reliability concept to estimate the probability of durability failure. Water-cement ratio in the durability analysis is the most important factor influencing chloride diffusion coefficient, evaporable water, etc. The probability distribution of water-cement ratio was calculated converting standard deviations of compressive strength in Concrete Standard Code to those of water-cement ratio. Based on the Monte Carlo Simulation, the probabilities of penetration depth and durability failure were calculated.

  • PDF

Probabilistic Reliability Analysis of Ultrasonic Inspection System about Sizing Performance of Defects in Piping on Nuclear Power Plant (원전 배관 결함의 크기측정성능에 대한 초음파 검사시스템의 확률론적 신뢰도 평가)

  • 김현묵;정지홍;지용우;장경영;박익근;박윤원
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.217-224
    • /
    • 2002
  • The performance demonstration round robin test was conducted to quantify the capability of ultrasonic inspection for in-service and to address some aspects of reliability for nondestructive evaluation. The fifteen inspection teams who employed procedures that met or exceeded ASME Sec. XI code requirements detected the piping of nuclear power plant with various cracks to evaluate the capability of detection. With data from PD-RR test, the performance of ultrasonic nondestructive inspection could be assessed using probability of length and depth sizing of cracks.

  • PDF

Sliding Multiple Symbol Differential Detection of Trellis-coded MDPSK (트랠리스 부호화된 MDPSK의 흐름 다중심볼 차동검파)

  • 김한종;강창언
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.39-46
    • /
    • 1994
  • In this paper, the idea of using a multiple symbol obervation interval to improve error probability performance is applied to differential detection of MTCM(multiple trellis code modulation) with ${\Pi}$/4 shift QPSK, 8DPSK and 16DPSK. We propose two types of sliding multiple symbol differential detection algorithm, type 1 and type 2. The two types of sliding detection scheme are examined and compared with conventional(symbol-by-symbol) detection and bolck detection with these modulation formats in an additive white Gaussian noise(AWGN) using the Monte Carlo simulation. We show that the amount of improvement over conventional and block detection depends on the number of phases and the number of additional symbol intervals added to the observation. Computer simulagtion results are presented for 2,4,8 states in AWGN channel.

  • PDF

A Numerical Analysis of Rarefied Flow of Cylinder Using FDDO (FDDO를 이용한 실린더를 지나는 희박기체의 해석)

  • Ahn M. Y.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.138-144
    • /
    • 1998
  • The BGK equation, which is the kinetic model equation of Boltzmann equation, is solved using FDDO(finite difference with the discrete-ordinate method) to compute the rarefied flow of monatomic gas. Using reduced velocity distribution and discrete ordinate method, the scalar equation is transformed into a system of hyperbolic equations. High resolution ENO(Essentially Non-Oscillatory) scheme based on Harten-Yee's MFA(Modified Flux Approach) method with Strang-type explicit time integration is applied to solve the system equations. The calculated results are well compared with the experimental density field of NACA0012 airfoil, validating the developed computer code. Next. the computed results of circular cylinder flow for various Knudsen numbers are compared with the DSMC(Direct Simulation Monte Carlo) results by Vogenitz et al. The present scheme is found to be useful and efficient far the analysis of two-dimensional rarefied gas flows, especially in the transitional flow regime, when compared with the DSMC method.

  • PDF