• Title/Summary/Keyword: Monte Carlo simulation code

Search Result 278, Processing Time 0.037 seconds

The comparisons of three scatter correction methods using Monte Carlo simulation (몬테카를로 시뮬레이션을 이용한 산란보정 방법들에 대한 비교)

  • 봉정균;김희중;이종두;권수일
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • Scatter correction for single photon emission computed tomography (SPECT) plays an important role to improve image quality and quantitation. The purpose of this study was to investigate three scatter correction methods using Monte Carlo simulation. Point source and Jaszack phantom filled with Tc-99m were simulated by Monte Carlo code, SIMIND. For scatter correction, we applied three methods, Compton window (CW) method, triple window (TW) method, and dual photopeak window (DPW) method. Point sources located at various depths along the center line within a 20-cm phantom were simulated to calculate the window ratios and corresponding scatter fractions by evaluating the polynomial coefficients for DPW method. Energy windows were located in W$_1$=92-125 keV, W$_2$=124-126 keV, W$_3$=136-140 keV, W$_4$=140-141 keV, and W$_{5}$=154-156 keV. The results showed that in Jaszack phantom with cold sphere and hot sphere, the TW gave the closest contrast and percentage recovery to the ideal image, respectively, while CW overestimated and DPW underestimated the contrast of ideal one. All three scatter correction methods showed an improved image contrast. In conclusion, scatter correction is essential for improving image contrast and accurate quantification. The choice of scatter correction method should be made on the basis of accuracies and ease of implementation.

  • PDF

The influence of BaO on the mechanical and gamma / fast neutron shielding properties of lead phosphate glasses

  • Mahmoud, K.A.;El-Agawany, F.I.;Tashlykov, O.L.;Ahmed, Emad M.;Rammah, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3816-3823
    • /
    • 2021
  • The mechanical features evaluated theoretically using Makishima-Mackenzie's model for glasses xBaO-(50-x) PbO-50P2O5 where x = 0, 5, 10, 15, 20, 30, 40, and 50 mol%. Wherefore, the elastic characteristics; Young's, bulk, shear, and longitudinal modulus calculated. The obtained result showed an increase in the calculated values of elastic moduli with the replacement of the PbO by BaO contents. Moreover, the Poisson ratio, micro-hardness, and the softening temperature calculated for the investigated glasses. Besides, gamma and neutron shielding ability evaluated for the barium doped lead phosphate glasses. Monte Caro code (MCNP-5) and the Phy-X/PSD program applied to estimate the mass attenuation coefficient of the studied glasses. The decrease in the PbO ratio has a negative effect on the MAC. The highest MAC decreased from 65.896 cm2/g to 32.711 cm2/g at 0.015 MeV for BPP0 and BPP7, respectively. The calculated values of EBF and EABF showed that replacement of PbO with BaO contents in the studied BPP glasses helps to reduce the number of photons accumulated inside the studied BPP glasses.

Generalized Distributed Multiple Turbo Coded Cooperative Differential Spatial Modulation

  • Jiangli Zeng;Sanya Liu;Hui Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.999-1021
    • /
    • 2023
  • Differential spatial modulation uses the antenna index to transmit information, which improves the spectral efficiency, and completely bypasses any channel side information in the recommended setting. A generalized distributed multiple turbo coded-cooperative differential spatial modulation based on distributed multiple turbo code is put forward and its performances in Rayleigh fading channels is analyzed. The generalized distributed multiple turbo coded-cooperative differential spatial modulation scheme is a coded-cooperation communication scheme, in which we proposed a new joint parallel iterative decoding method. Moreover, the code matched interleaver is considered to be the best choice for the generalized multiple turbo coded-cooperative differential spatial modulation schemes, which is the key factor of turbo code. Monte Carlo simulated results show that the proposed cooperative differential spatial modulation scheme is better than the corresponding non-cooperative scheme over Rayleigh fading channels in multiple input and output communication system under the same conditions. In addition, the simulation results show that the code matched interleaver scheme gets a better diversity gain as compared to the random interleaver.

Coupled neutronics/thermal-hydraulic analysis of ANTS-100e using MCS/RAST-F two-step code system

  • Tung Dong Cao Nguyen;Tuan Quoc Tran;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4048-4056
    • /
    • 2023
  • The feasibility of using the Monte Carlo code MCS to generate multigroup cross sections for nodal diffusion simulations RAST-F of liquid metal fast reactors is investigated in this paper. The performance of the MCS/RAST-F code system is assessed using steady-state simulations of the ANTS-100e core. The results show good agreement between MCS/RAST-F and MCS reference solutions, with a keff difference of less than 77 pcm and root-mean-square differences in radial and axial power of less than 0.5% and 0.25%, respectively. Furthermore, the MCS/RAST-F reactivity feedback coefficients are within three standard deviations of the MCS coefficients. To validate the internal thermal-hydraulic (TH) feedback capability in RAST-F code, the coupled neutronic/TH1D simulation of ANTS-100e is performed using the case matrix obtained from MCS branch calculations. The results are compared to those obtained using the MARS-LBE system code and show good agreement with relative temperature differences in fuel and coolant of less than 0.8%. This study demonstrates that the MCS/RAST-F code system can produce accurate results for core steady-state neutronic calculations and for coupled neutronic/TH simulations.

Mechanism of Striation in Plasma Display Panel Cell

  • Yang, Sung-Soo;Iza, Felipe;Kim, Hyun-Chul;Lee, Jae-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.167-170
    • /
    • 2005
  • The mechanism of striation in the coplanar- and matrix-type plasma display panel (PDP) cells has been studied using the particle-in-cell Monte-Carlo Collision (PIC-MCC) model. The striation formation is related to the ionization energy of neutral atoms and the well-like deformation of space potential by space charge distribution. Negative wall charge accumulation by electrons on the MgO surface of the anode region is also one of the key factors for the formation of striation. The clearness of the striation phenomenon in PIC-MCC code in comparison with fluid code can be explained by using nonlocal electron kinetic effect.

  • PDF

Performance Analysis of Space-Time Block Coded Cooperative Wireless Transmission in Rayleigh Fading Channels

  • Kong Hyung-Yun;Khuong Ho-Van
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.306-312
    • /
    • 2006
  • This paper studies theoretically the bit error rate (BER) performance of cooperative transmission using space-time block code (STBC) in a fully distributed manner. Specifically, we first propose a STBC-based cooperative signaling structure to make the cooperation of three single-antenna terminals possible. Then, we derive the closed-form BER expressions for both cooperation and noncooperation schemes under flat Rayleigh fading channel plus additive white Gaussian noise (AWGN). The validity of these expressions is verified by Monte-Carlo simulations. A variety of numerical and simulation results reveal that the cooperative transmission achieves higher diversity gain and better performance than the direct transmission for the same total transmit power.

Validation of electromagnetic physics models and electron range in Geant4 Brachytherapy application

  • A. Albqoor ;E. Ababneh ;S. Okoor;I. Zahran
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.229-237
    • /
    • 2023
  • The mechanics underlying photon and electron interactions was validated using our developed Brachytherapy computer code for high Dose Rate (HDR). By comparing the photon cross-section utilizing multiple physics libraries in the developed code, the results were benchmarked against experimental and theoretical findings. Klein-Nishina and experimental cross-section results were in good agreement with the Livermore library results. For two therapeutically relevant materials, the first scattered electron range was measured within 1 mm and 2 mm, which has significant implications for the interpretation of the kernel dose spikes observed in previous research.

Simulation and Design of Optimized Three-Layer Radiation Shielding to Protect Electronic Boards of Satellite Revolving in Geostationary Earth Orbit (GEO) Orbit against Proton Beams

  • Ali Alizadeh;Gohar Rastegarzadeh
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • The safety of electronic components used in aerospace systems against cosmic rays is one of the most important requirements in their design and construction (especially satellites). In this work, by calculating the dose caused by proton beams in geostationary Earth orbit (GEO) orbit using the MCNPX Monte Carlo code and the MULLASSIS code, the effect of different structures in the protection of cosmic rays has been evaluated. A multi-layer radiation shield composed of aluminum, water and polyethylene was designed and its performance was compared with shielding made of aluminum alone. The results show that the absorbed dose by the simulated protective layers has increased by 35.3% and 44.1% for two-layer (aluminum, polyethylene) and three-layer (aluminum, water, polyethylene) protection respectively, and it is effective in the protection of electronic components. In addition to that, by replacing the multi-layer shield instead of the conventional aluminum shield, the mass reduction percentage will be 38.88 and 39.69, respectively, for the two-layer and three-layer shield compared to the aluminum shield.

A study on slim-hole neutron logging based on numerical simulation (소구경 시추공에서의 중성자검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.219-226
    • /
    • 2012
  • This study provides an analysis on results of neutron logging for various borehole environments through numerical simulation based on a Monte Carlo N-Particle (MCNP) code developed and maintained by Los Alamos National Laboratory. MCNP is suitable for the simulation of neutron logging since the algorithm can simulate transport of nuclear particles in three-dimensional geometry. Rather than simulating a specific tool of a particular service company between many commercial neutron tools, we have constructed a generic thermal neutron tool characterizing commercial tools. This study makes calibration chart of the neutron logging tool for materials (e.g., limestone, sandstone and dolomite) with various porosities. Further, we provides correction charts for the generic neutron logging tool to analyze responses of the tool under various borehole conditions by considering brine-filled borehole fluid and void water, and presence of borehole fluid.

A Novel Scheme to Mitigate a GPS L1 C/A Signal Repeat-back Jamming Effect, According to a Code Tracking Bias Estimation, Using Combined Pseudo-random Noise Signals (통합 의사잡음신호 기반 부호추적편이 추정에 따른 GPS L1 C/A 신호의 재방송재밍 영향 완화 기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.869-875
    • /
    • 2016
  • In this paper, a novel scheme with which to mitigate a repeat-back jamming effect is proposed for the GPS L1 coarse/acquisition signal. The proposed scheme estimates the code tracking bias caused by repeat-back jamming signals using a Combined Pseudo-random noise signal. It then mitigates the repeat-back jamming effect by subtracting the estimated code timing on a normal correlation channel from the estimated value. Through a Monte-Carlo simulation, the proposed scheme can diminish the running average of code tracking bias to less than 10% of the bias using the conventional scheme.