To estimate the reliability of a large and complex network with a small variance, we propose two dynamic Monte Carlo sampling methods: the sequential minimal cut set (SMCS) and the sequential minimal path set (SMPS) methods. These methods do not require all minimal cut sets or path sets to be given in advance and do not simulate all arcs at each trial, which can decrease the valiance of network reliability. Based on the proposed methods, we develop the importance sampling estimators, the total hazard (or safety) estimator and the hazard (or safety) importance sampling estimator, and compare the performance of these simulation estimators. It is found that these estimators can significantly reduce the variance of the raw simulation estimator and the usual importance sampling estimator. Especially, the SMCS algorithm is very effective in case that the failure probabilities of arcs are low. On the contrary, the SMPS algorithm is effective in case that the success Probabilities of arcs are low.
In this study, the effective method for reliability estimation is proposed using tow-staged kriging metamodel and genetic algorithm. Kriging metamodel can be determined by appropriate sampling range and the number of sampling points. The first kriging metamodel is made based on the proposed sampling points. The advanced f'=rst order reliability method is applied to the first kriging metamodel to determine the reliability and most probable failure point(MPFP) approximately. Then, the second kriging metamodel is constructed using additional sampling points near the MPFP. These points are selected using genetic algorithm that have the maximum mean squared error. The Monte-Carlo simulation is applied to the second kriging metamodel to estimate the reliability. The proposed method is applied to numerical examples and the results are almost equal to the reference reliability.
Importance sampling methods have been developed with the aim of reducing the computational costs inherent in Monte Carlo methods. This study proposes a new algorithm called the adaptive kernel method which combines and modifies some of the concepts from adaptive sampling and the simple kernel method to evaluate the structural reliability of time variant problems. The essence of the resulting algorithm is to select an appropriate starting point from which the importance sampling density can be generated efficiently. Numerical results show that the method is unbiased and substantially increases the efficiency over other methods.
비모수 베이스 통계학, 확률적 표집에 기반한 추론 등이 기계학습의 주요 패러다임으로 등장하면서 디리슐레(Dirichlet) 분포는 최근 다양한 그래프 모형 곳곳에 등장하고 있다. 디리슐레 분포는 일변수 감마 분포를 벡터 분포로 확장한 형태의 하나이다. 본 논문에서는 감마 분포를 갖는 임의의 자연수 X를 K개의 자연수의 합으로 임의 분할 할 때 각 부분의 크기 비율을 디리슐레 분포에서 표집하는 방법을 제안한다. 일반적으로 디리슐레 분포는 연속적인 (K-1)-단체(simplex) 위에 정의 되지만 자연수로 분할하는 표본은 자연수라는 조건 때문에 단체 내부의 이산 그리드 점에만 정의된다. 본 논문에서는 단체 위의 그리드 상의 이웃 점들의 확률 분포로부터 마르코프연쇄 몬테 칼로(MCMC) 제안 분포를 정의하고 일련의 표본들의 마르코프 연쇄를 구현하는 알고리듬을 제안한다. 본 방법은 마르코프 모델, HMM 및 준-HMM 등에서 각 상태별 시간 지속 분포를 표현하는데 활용 가능하다. 나아가 최근 제안된 전역-지역(global-local) 상태지속 분포를 동시에 모형화하는 감마-디리슐레 HMM에도 응용가능하다.
우리나라 대다수 조사전문기관은 지역 성 나이대 할당표본추출에 의한 전화조사를 하고 있다. 그러나 평일에는 인구사회적 속성에 따른 개인별 재택률의 차이가 심하므로 체계적 응답자선택편향(respondent selection bias)이 우려된다. 문제 해결을 위해 조사시간대를 할당변수로 추가한 '시간균형할당표본추출'(time-balanced quota sampling) 방법과 저녁시간대 할당을 부분적으로 완화한 '시간균형준할당표본추출'(time-balanced quasi-quota sampling) 방법을 제안한다. 그리고 우리나라 통계청에서 2004년에 수집한 생활시간조사 원자료를 가상적 모집단으로 설정하여 새로운 할당추출법과 기존할당추출법에 의해 얻는 몬테칼로 표본들을 비교할 것이다.
수자원장기종합계획에서는 물의 과부족 또는 가용한 물을 정량적으로 평가하기 위해 물수지 분석을 실시한다. 물수지 분석은 미래 예측되는 용수수요량과 공급가능량을 비교하는 단순한 과정이지만, 분석 과정에 포함되어 있는 자료와 모형의 불확실성으로 인하여 물수지 분석을 실시한 각종 보고서마다 서로 다른 결과를 보여주고 있어 국민의 신뢰를 얻지 못한 실정이다. 본 연구에서는 Monte Carlo simulation 기법 중 Latin Hypercube sampling에 기반한 확률적 모사로 물수지 분석에서의 불확실성을 표현하고 분석하였다. 대표 물수지 입력변수로 자연유량, 생공용수, 농업용수, 회귀율을 선정하여 이를 선형회귀와 entropy 이론으로 분포를 설정하였고, 불확실성 분석을 통하여 물부족량에 대한 불확실성의 범위와 위치를 규명하였다. 금강수계 3개의 소유역에 대해 불확실성 분석을 한 결과, 기존의 물수지 분석에서의 단일 물부족량이 과소 및 과대 추정될 수 있음을 보였고, 또한 민감도 분석을 통해 농업회귀율이 입력변수들 중 가장 큰 불확실성을 가지고 있으나 결과에는 거의 영향을 미치지 못하고 있음을 알 수 있었다.
Conventional Monte Carlo simulation-based methods for seismic risk assessment of water networks often require excessive computational time costs due to the hydraulic analysis. In this study, an Artificial Neural Network-based surrogate model was proposed to efficiently evaluate the flow-based system reliability of water distribution networks. The surrogate model was constructed with appropriate training parameters through trial-and-error procedures. Furthermore, a deep neural network with hidden layers and neurons was composed for the high-dimensional network. For network training, the input of the neural network was defined as the damage states of the k-dimensional network facilities, and the output was defined as the network system performance. To generate training data, random sampling was performed between earthquake magnitudes of 5.0 and 7.5, and hydraulic analyses were conducted to evaluate network performance. For a hydraulic simulation, EPANET-based MATLAB code was developed, and a pressure-driven analysis approach was adopted to represent an unsteady-state network. To demonstrate the constructed surrogate model, the actual water distribution network of A-city, South Korea, was adopted, and the network map was reconstructed from the geographic information system data. The surrogate model was able to predict network performance within a 3% relative error at trained epicenters in drastically reduced time. In addition, the accuracy of the surrogate model was estimated to within 3% relative error (5% for network performance lower than 0.2) at different epicenters to verify the robustness of the epicenter location. Therefore, it is concluded that ANN-based surrogate model can be utilized as an alternative model for efficient seismic risk assessment to within 5% of relative error.
몬테카를로 트리탐색은 최대우선탐색 알고리즘이며, 많은 게임 특히 바둑 게임에 성공적으로 적용되어 왔다. 삼목 게임에서 MCTS 간의 대국을 통해 성능을 평가하고자 했다. 첫 번째 대국자는 항상 두 번째 대국자에 비해 압도적인 우위를 보였으며, 최선의 게임 결과가 무승부가 됨에도 불구하고 첫 번째 대국자가 두 번째 대국자에 비해 우월한 이유를 찾고자 했다. MCTS는 반복적인 무작위 샘플링을 기반으로 하는 통계적 알고리즘이기 때문에, 특히 두 번째 대국자를 위해 전략을 요하는 시급한 문제를 적절히 대처하지 못한다. 이를 위해 전략적 MCTS(S-MCTS)를 제안하며, S-MCTS는 결코 삼목 게임에서 지지 않는다는 것을 보였다.
Oh, Kyemin;Han, Sang Hoon;Park, Jin Hee;Lim, Ho-Gon;Yang, Joon Eon;Heo, Gyunyoung
Nuclear Engineering and Technology
/
제49권4호
/
pp.710-720
/
2017
In Korea, many nuclear power plants operate at a single site based on geographical characteristics, but the population density near the sites is higher than that in other countries. Thus, multiunit accidents are a more important consideration than in other countries and should be addressed appropriately. Currently, there are many issues related to a multiunit probabilistic safety assessment (PSA). One of them is the quantification of a multiunit PSA model. A traditional PSA uses a Boolean manipulation of the fault tree in terms of the minimal cut set. However, such methods have some limitations when rare event approximations cannot be used effectively or a very small truncation limit should be applied to identify accident sequence combinations for a multiunit site. In particular, it is well known that seismic risk in terms of core damage frequency can be overestimated because there are many events that have a high failure probability. In this study, we propose a quantification method based on a Monte Carlo approach for a multiunit PSA model. This method can consider all possible accident sequence combinations in a multiunit site and calculate a more exact value for events that have a high failure probability. An example model for six identical units at a site was also developed and quantified to confirm the applicability of the proposed method.
We describe a hierarchical bayesian model to analyze multinomial nonignorable nonresponse data. Using a Dirichlet and beta prior to model the cell probabilities, We develop a complete hierarchical bayesian analysis for multinomial proportions without making any algebraic approximation. Inference is sampling based and Markove chain Monte Carlo methods are used to perform the computations. We apply our method to the dta on body mass index(BMI) and show the model works reasonably well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.