• Title/Summary/Keyword: Monte Carlo 전산모사

Search Result 121, Processing Time 0.02 seconds

Development of a Proton Computed Tomography System with Monte Carlo Simulation (양성자 전산화 단층 촬영 장치 개발에 관한 전산모사 연구)

  • Seo, Jeong-Min;Kim, Chan-Hyeong
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.215-219
    • /
    • 2011
  • Monte Carlo simulation was performed to investigate optimal system of proton computed tomography and to avoid the errors by using data from X ray computed tomography in proton therapy. The informations from two DSSDs to measure position and LYSO scintillation detector to measure the residual energy of proton particle in GEANT4 were used for reconstruction computed tomography.

Monte Carlo simulation for the transport of ion in matter (물질내의 이온수송에 대한 Monte Carlo 전산모사)

    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.292-300
    • /
    • 1996
  • The scattering of incident ions and target atoms in the amorphous solid matters are calculated by Monte Carlo simulation method. The experimentally derived universal scattering cross-section of Kalbitzer and Oetzmann is used to describe nuclear scattering. For electronic energy loss, the Lindhard-Scharff and Bethe formula are used. Comparing the ion scattering formulas and ranges with the known results of experiment and other programs, we find our results are good agreement with others.

  • PDF

A Monte Carlo Simulation Study of a Therapeutic Proton Beam Delivery System Using the Geant4 Code (Geant4 몬테카를로 코드를 이용한 양성자 치료기 노즐의 전산모사)

  • Shin, Jungwook;Shim, Hyunha;Kwak, Jungwon;Kim, Dongwook;Park, Sungyong;Cho, Kwan Ho;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.226-232
    • /
    • 2007
  • We studied a Monte Carlo simulation of the proton beam delivery system at the National Cancer Center (NCC) using the Geant4 Monte Carlo toolkit and tested its feasibility as a dose verification framework. The Monte Carlo technique for dose calculation methodology has been recognized as the most accurate way for understanding the dose distribution in given materials. In order to take advantage of this methodology for application to external-beam radiotherapy, a precise modeling of the nozzle elements along with the beam delivery path and correct initial beam characteristics are mandatory. Among three different treatment modes, double/single-scattering, uniform scanning and pencil beam scanning, we have modeled and simulated the double-scattering mode for the nozzle elements, including all components and varying the time and space with the Geant4.8.2 Monte Carlo code. We have obtained simulation data that showed an excellent correlation to the measured dose distributions at a specific treatment depth. We successfully set up the Monte Carlo simulation platform for the NCC proton therapy facility. It can be adapted to the precise dosimetry for therapeutic proton beam use at the NCC. Additional Monte Carlo work for the full proton beam energy range can be performed.

  • PDF

Development of Tomographic Scan Method for Industrial Plants (산업공정반응기의 감마선 전산 단층촬영기술 개발)

  • Kim, Jong-Bum;Jung, Sung-Hee;Moon, Jin-Ho;Kwon, Taek-Yong;Cho, Gyu-Seong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.20-30
    • /
    • 2010
  • In this paper, a new tomographic scan method with fixed installed detectors and rotating source from gamma projector was presented to diagnose the industrial plants which were impossible to be examined by conventional tomographic systems. Weight matrix calculation method which was suitable for volumetric detector and statistical iterative reconstruction method were applied for reconstructing the simulation and experimental data. Monte Carlo simulations had been performed for two kinds of phantoms. Lab scale experiment with a same condition as one of phantoms, had been carried out. Simulation results showed that reconstruction from photopeak counting measurement gave the better results than from the gross counting measurement although photopeak counting measurement had large statistical errors. Experimental data showed the similar result as Monte Carlo simulation. Those results appeared to be promising for industrial tomographic applications, especially for petrochemical industries.

Computer aided simulation of spark plasma sintering process (Part 2 : analysis) (스파크 플라스마 소결공정의 전산모사(2부 : 해석))

  • Keum Y.T.;Jung S.C.;Jean J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • In this Part 2, the grain growth processes of $Al_2O_3$ ceramics is numerically simulated using Monte Carlo method (MCM) and finite element method (FEM) and the pore sizes are analyzed. As the green ceramics whose thermal conductivities in high temperatures are generally low are sintered by the plasma heat and are rapidly cooled, the grain growth of the sintered body in the center is different from that in the outer. Also, even in the same sintering temperature, the pore size differs according to the pressing pressure. In order to prove the difference, the temperature distribution of the sintered body was analyzed using the finite element method and then the grain growth process associated with pressing pressures and relative densities was simulated using Monte Carlo method.

Development of Reference Korean Organ and Effective Dose Calculation Online System (웹 기반 표준한국인 장기 흡수선량 및 유효선량 평가 시스템 개발)

  • Park, Sooyeun;Yeom, Yeon Soo;Kim, Jae Hyeon;Lee, Hyun Su;Han, Min Cheol;Jeong, Jong Hwi;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.30-37
    • /
    • 2014
  • Recently High-Definition Reference Korean-Man (HDRK-Man) and High-Definition Reference Korean-Woman (HDRK-Woman) were constructed in Korea. The HDRK phantoms were designed to represent respectively reference Korean male and female to calculate effective doses for Korean by performing Monte Carlo dose calculation. However, the Monte Carlo dose calculation requires detailed knowledge on computational human phantoms and Monte Carlo simulation technique which regular researchers in radiation protection dosimetry and practicing health physicists do not have. Recently the UFPE (Federal University of Pernambuco) research group has developed, and opened to public, an online Monte Carlo dose calculation system called CALDOSE_X(www.caldose.org). By using the CALDOSE_X, one can easily perform Monte Carlo dose calculations. However, the CALDOSE_X used caucasian phantoms to calculate organ doses or effective doses which are limited for Korean. The present study developed an online reference Korean dose calculation system which can be used to calculate effective doses for Korean.

The Simulation of Si quantum Dot Formation in PVD Process (PVD 공정을 이용한 Si 양자점 형성 전산모사)

  • Kim, Yun-Sung;Chung, Yong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.517-522
    • /
    • 2002
  • In this study, the effect of the processing parameters in PVD process on the size and the distribution of deposited Si quantum dots was quantitatively investigated by computational simulation utilizing Monte Carlo method. The processing parameters, substrate temperature, deposition time, gas pressure and target-substrate distance were selected as variables since those parameters are often selected as variables in PVD experiments. It is predicted that the density of $1{\times}10^{12}cm^{-2}$ Si quantum dots can be deposited on the substrate when the deposition rate is 0.05 nm/sec at the substrate temperature of 490${\circ}$, deposition time of 7 sec, gas pressure of 3 mTorr and target-substrate distance of 8 cm.