• Title/Summary/Keyword: Monsoon Climate

Search Result 165, Processing Time 0.029 seconds

Relationships Between the Characteristics of Algae Occurrence and Environmental Factors in Lake Juam, Korea (주암호의 조류 발생 특성과 수질요인의 상관성 연구)

  • Seo, Kyungae;Jung, Soojung;Park, Jonghwan;Hwang, Kyoungseop;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.317-328
    • /
    • 2013
  • The purpose of this study was to investigate the change of phytoplankton fluctuation and long term of water quality of Lake Juam and to evaluate the relationship between phytoplankton pattern and environmental factors data. Correlation and factor analyses were employed to identify key environmental factors affecting phytoplankton dynamics. Of 18 parameters, pH, temperature, COD, BOD and T-P were highly correlated with Chl-a. Phytoplankton data showed that cyanobacteria were dominant, and more than 60% of total algae density. Also Lake Juam received a lot of influence of the Asian monsoon climate. This study presents necessity of multivariate statistic techniques for evaluation of Lake Juam complex data set with a view to get better information data and effective management of water source.

Water level fluctuations of the Tonle Sap derived from ALOS PALSAR

  • Choi, Jung-Hyun;Trung, Nguyen Van;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.188-191
    • /
    • 2008
  • The Tonle Sap, Cambodia, is a huge lake and periodically flooded due to monsoon climate. The incoming water causes intensive flooding that expands the lake over vast floodplain and wetland consisting mainly of forests and shrubs. Monitoring the water-level change over the floodplain is essential for flood prediction and water resource management. A main objective of this study is flood monitoring over Tonle Sap area using ALOS PALSAR. To study double-bounce effects in the lake, backscattering effect using ALOS PALSAR dual-polarization (HH, HV) data was examined. InSAR technique was applied for detection of water-level change. HH-polarization interferometric pairs between wet and dry seasons were best to measure water level change around northwestern parts of Tonle Sap. The seasonal pattern of water-level variations in Tonle Sap studied by InSAR method is similar to the past and altimeter data. However, water level variation measured by SAR was much smaller than that by altimeter because the DInSAR measurement only represents water level change at a given region of floodplain while altimeter provides water level variation at the central parts of the lake.

  • PDF

Comparison of Calibrations using Modified SWAT Auto-calibration Tool with Various Efficiency Criteria (다양한 검증 지수를 이용한 SWAT 자동 보정 비교 평가)

  • Kang, Hyun-Woo;Ryu, Ji-Chul;Kim, Nam-Won;Kim, Seong-Joon;Engel, Bernard A.;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.19-19
    • /
    • 2011
  • The appraisals of hydrology model behavior for flow and water quality are generally performed through comparison of simulated data with observed ones. To perform appraisal of hydrology model, some criteria are often used, such as coefficient of determination ($R^2$), Nash and Sutcliffe model efficiency coefficient (NSE), index of agreement (d), modified forms of NSE and d, and relative efficiency criteria NSE and d. These criteria are used not only for hydrology model estimations also for various comparisons of two data sets; This NSE has been often used for SWAT calibration. However, it has been known that the NSE value has some limitations in evaluating hydrology at watersheds under monsoon climate because this statistic is largely affected by higher values in the data set. To overcome these limitations, the SWAT auto-calibration module was enhanced with K-means clustering and direct runoff/baseflow modules. However the NSE is still being used in this module to evaluate model performance. Therefore, the SWAT Auto-calibration module was modified to incorporate alternative efficiency criteria into the SWAT K-means/direct runoff-baseflow auto-calibration module. It is expected that this enhanced SWAT auto-calibration module will provide better calibration capability of SWAT model for all flow regime.

  • PDF

Region-Scaled Soil Erosion Assessment using USLE and WEPP in Korea

  • Kim, Min-Kyeong;Jung, Kang-Ho;Yun, Sun-Gang;Kim, Chul-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.314-320
    • /
    • 2008
  • During the summer season, more than half of the annual precipitation in Korea occurs during the summer season due to the geographical location in the Asian monsoon belt. So, this causes severe soil erosion from croplands, which is directly linked to the deterioration of crop/land productivity and surface water quality. Therefore, much attention has been given to develop accurate estimation tools of soil erosion. The aim of this study is to assess the performance of using the empirical Universal Soil Loss Equation (USLE) and the physical-based model of the Water Erosion Prediction Project (WEPP) to quantify eroded amount of soil from agricultural fields. Input data files, including climate, soil, slope, and cropping management, were modified to fit into Korean conditions. Chuncheon (forest) and Jeonju (level-plain) were selected as two Korean cities with different topographic characteristics for model analysis. The results of this current study indicated that better soil erosion prediction can be achieved using the WEPP model since it has better power to illustrate a higher degree of spatial variability than USLE in topography, precipitation, soils, and crop management practices. These present findings are expected to contribute to the development of the environmental assessment program as well as the conservation of the agricultural environment in Korea.

Recovery of aquatic insect communities after a catastrophic flood in a Korean stream

  • Lee, Hwang-Goo;Bae, Yeon-Jae
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • In August 2002, a heavy rainfall (445 mm in total for 5 consecutive days) resulted in a catastrophic flood, and it completely washed away the benthic fauna from the mainstream channel of the Gapyeong stream, a typical mid-sized stream in the central Korean peninsula. This study was to investigate the recovery patterns of aquatic insect communities that were damaged by the flood. Aquatic insects were sampled quantitatively using a Surber sampler ($50{\times}50$ cm, 1 riffle and 1 pool/run habitats per site) from three sites (4th-6th order) of the Gapyeong stream prior to 2000 and seasonally after the flood event from 2003 to 2006. Before the flood in the reference year (2000), a total of 77 species of aquatic insects were collected, whereas after the flood 47 species (2003), 51 species (2004), 64 species (2005) and 55 species (2006) were collected from the whole sampling sites. The aquatic insect density decreased to 26.85% (2003), 90.25% (2004), 52.53% (2005) and 54.95% (2006) of that recorded in the reference year. Although approximately 70% of the aquatic insect fauna has recovered since the flood event, the species composition in the most recent year differed substantially (similarity ca. 50%). On the other hand, the compositions of functional groups have not significantly changed. Aquatic insect communities at the riffle sites were affected more profoundly than those at the pool/run sites. The aquatic insect communities at the upstream site recovered more rapidly than those at the downstream sites.

Historical changing of flow characteristics over Asian river basins

  • Ha, Doan Thi Thu;Kim, Tae-Son;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.118-118
    • /
    • 2020
  • This study investigates the change of flow characteristics over 10 Asian river basins in the past 30 years (1976-2005). The variation is estimated from The Soil and Water Assessment Tool (SWAT) model outputs based on reanalysis data which was bias-corrected for Asian monsoon reagion. The model was firstly calibrated and validated using observed data for daily streamflow. Four statistical criteria were applied to evaluate the model performance, including Coefficient of determination (R2), Nash - Sutcliffe model efficiency coeffi cient (NSE), Root mean square error-observations standard deviation ratio (RSR), and Percentage Bias (PBIAS). Then parameters of the model were applied for the historical period 1976-2005. The estimates show a temporal non-considerable increasing rate of daily streamflow in most of the basins over the past 30 years. The difference of monthly discharge becomes more significant during the months in the wet season (June to September) in all basins. The seasonal runoff shows significant difference in Summer and Autumn, when the rainfall intensity is higher. The line showing averaged runoff/rainfall ratio in all basins is sharp, presenting high variation of seasonal runoff/rainfall ratio from season to season.

  • PDF

Quantifying the effects of climate variability and human activities on runoff for Vugia - Thu Bon River Basin in Central of Viet Nam

  • Lan, Pham Thi Huong;Thai, Nguyen Canh;Quang, Tran Viet;Long, Ngo Le
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.233-233
    • /
    • 2015
  • Vu Gia - Thu Bon basin is located in central Vietnam between Truong Son mountain range on the border with Lao in the west and the East Sea in the east. The basin occupies about 10,350 km2 or roughly 90% of the Quang Nam Province and includes Da Nang, a very large city with about 876,000 inhabitants. Total annual rainfall ranges from about 2,000 mm in central and downstream areas to more than 4,000 mm in southern mountainous areas. Rainfall during the monsoon season accounts for 65 to 80% of total annual rainfall. The highest amount of rainfall occurs in October and November which accounts for 40 to 50% of the annual rainfall. Rainfall in the dry season represents about 20 to 35% of the total annual rainfall. The low rainfall season usually occurs from February to April, accounting for only 3 to 5% of the total annual rainfall. The mean annual flow volume in the basin is $19.1{\times}109m 3$. Similar to the distribution of rainfall, annual flows are distinguished by two distinct seasons (the flood season and the low-flow season). The flood season commonly starts in the mid-September and ends in early January. Flows during the flood season account for 62 to 69% of the total annual water volume, while flows in the dry season comprise 22 to 38% of total annual run-off. The water volume gauged in November, the highest flow month, accounts for 26 to 31% of the total annual run-off while the driest period is April with flows of 2 to 3% of the total annual run-off. There are some hydropower projects in the Vu Gia - Thu Bon basin as the cascade of Song Bung 2, Song Bung 4, and Song Bung 5, the A Vuong project currently under construction, the Dak Mi 1 and Dak Mi 4 projects on the Khai tributary, and the Song Con project on the Con River. Both the Khai tributary and the Song Con join the Bung River downstream of SB5, although the Dak Mi 4 project involves an inter-basin diversion to Thu Bon. Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Vu Gia - Thu Bon River Basin in the central of Viet Nam were analyzed to investigate changes in annual runoff during the period of 1977-2010. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. The hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  • PDF

The Interdecadal Variation of Relationship between Indian Ocean Sea Surface Temperature and East Asian Summer Monsoon (인도양 해수면 온도와 동아시아 여름 몬순의 관계에 대한 장주기 변동성)

  • Kim, Won-Mo;Jhun, Jong-Ghap;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.45-59
    • /
    • 2008
  • This study aims to analyze the interdecadal variation of relationship between Indian Ocean sea surface temperature (SST) and East Asian summer monsoon (EASM) during the period of 1948-2005. In the pre-period, which is from 1948 to 1975, the relationship between Indian Ocean SST and East Asian summer rainfall anomaly (EASRA) is very weak. However, in the post-period, which is trom 1980 to 2005, Indian Ocean SST is significantly positively correlated with EASRA. The equatorial Indian Ocean SST has a significantly positive correlation with EASM in spring, while Indian Ocean SST near the bay of Bengal has a positive relationship in summer for the post-period. Also the interdecadal variation of the correlation between Indian Ocean SST and EASRA is significant, but that between EASRA and the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) is not. Atmospheric general circulation model (AGCM) test results show the pattern of increased precipitation in the zonal belt region including South Korea and Japan and the pattern of decreased precipitation in the northeastern part of Asia, which are similar to the real climate. The increase of the precipitation in August from the model run is also similar to the real climate variation. Model results indicate that the Indian Ocean SST warming could intensify the convection over the vicinity of the Philippines and the Bay of Bengal, which forces to move northward the convection center. This warming strengthens the EASM and weakens the WNPM.

Study on Climate Change Impacts on Hydrological Response using a SWAT model in the Xe Bang Fai River Basin, Lao People's Democratic Republic (기후변화에 따른 라오스인민공화국의 시방파이 유역의 수문현상 예측에 대한 연구: SWAT 모델을 이용하여)

  • Phomsouvanh, Virasith;Phetpaseuth, Vannaphone;Park, Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.6
    • /
    • pp.779-797
    • /
    • 2016
  • A calibrated hydrological model is a useful tool for quantifying the impacts of the climate variations and land use/land cover changes on sediment load, water quality and runoff. In the rainy season each year, the Xe Bang Fai river basin is provisionally flooded because of typhoons, the frequency and intensity of which are sensitive to ongoing climate change. Severe heavy rainfall has continuously occurred in this basin area, often causing severe floods at downstream of the Xe Bang Fai river basin. The main purpose of this study is to investigate the climate change impact on river discharge using a Soil and Water Assessment Tool (SWAT) model based on future climate change scenarios. In this study, the simulation of hydrological river discharge is used by SWAT model, covering a total area of $10,064km^2$ in the central part of country. The hydrological model (baseline) is calibrated and validated for two periods: 2001-2005 and 2006-2010, respectively. The monthly simulation outcomes during the calibration and validation model are good results with $R^2$ > 0.9 and ENS > 0.9. Because of ongoing climate change, three climate models (IPSL CM5A-MR 2030, GISS E2-R-CC 2030 and GFDL CM3 2030) indicate that the rainfall in this area is likely to increase up to 10% during the summer monsoon season in the near future, year 2030. As a result of these precipitation increases, the SWAT model predicts rainy season (Jul-Aug-Sep) river discharge at the Xebangfai@bridge station will be about $800m^3/s$ larger than the present. This calibrated model is expected to contribute for preventing flood disaster risk and sustainable development of Laos

  • PDF

Evaluation of Temperature and Precipitation over CORDEX-EA Phase 2 Domain using Regional Climate Model HadGEM3-RA (HadGEM3-RA 지역기후모델을 이용한 CORDEX 동아시아 2단계 지역의 기온과 강수 모의 평가)

  • Byon, Jae-Young;Kim, Tae-Jun;Kim, Jin-Uk;Kim, Do-Hyun
    • Journal of the Korean earth science society
    • /
    • v.43 no.3
    • /
    • pp.367-385
    • /
    • 2022
  • This study evaluates the temperature and precipitation results in East Asia simulated from the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) developed by the UK Met Office. The HadGEM3-RA is conducted in the Coordinated Regional climate Downscaling Experiment-East Asia (CORDEX-EA) Phase II domain for 15 year (2000-2014). The spatial distribution of rainbands produced from the HadGEM3-RA by the summer monsoon is in good agreement with the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APRODITE) data over the East Asia. But, precipitation amount is overestimated in Southeast Asia and underestimated over the Korean Peninsula. In particular, the simulated summer rainfall and APRODITE data show the least correlation coefficient and the maximum value of root mean square error in South Korea. Prediction of temperature in Southeast Asia shows underestimation with a maximum error during winter season, while it appears the largest underestimation in South Korea during spring season. In order to evaluate local predictability, the time series of temperature and precipitation compared to the ASOS data of the Seoul Meteorological Station is similar to the spatial average verification results in which the summer precipitation and winter temperature underestimate. Especially, the underestimation of the rainfall increases when the amounts of precipitation increase in summer. The winter temperature tends to underestimate at low temperature, while it overestimates at high temperature. The results of the extreme climate index comparison show that heat wave is overestimated and heavy rainfall is underestimated. The HadGEM3-RA simulated with a horizontal resolution of 25 km shows limitations in the prediction of mesoscale convective system and topographic precipitation. This study indicates that improvement of initial data, horizontal resolution, and physical process are necessary to improve predictability of regional climate model.