DOI QR코드

DOI QR Code

The Interdecadal Variation of Relationship between Indian Ocean Sea Surface Temperature and East Asian Summer Monsoon

인도양 해수면 온도와 동아시아 여름 몬순의 관계에 대한 장주기 변동성

  • Kim, Won-Mo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jhun, Jong-Ghap (School of Earth and Environmental Sciences, Seoul National University) ;
  • Moon, Byung-Kwon (Division of Science Education/Institute of Science Education, Chonbuk National University)
  • 김원모 (서울대학교 지구환경과학부) ;
  • 전종갑 (서울대학교 지구환경과학부) ;
  • 문병권 (전북대학교 과학교육학부/과학교육연구소)
  • Published : 2008.02.29

Abstract

This study aims to analyze the interdecadal variation of relationship between Indian Ocean sea surface temperature (SST) and East Asian summer monsoon (EASM) during the period of 1948-2005. In the pre-period, which is from 1948 to 1975, the relationship between Indian Ocean SST and East Asian summer rainfall anomaly (EASRA) is very weak. However, in the post-period, which is trom 1980 to 2005, Indian Ocean SST is significantly positively correlated with EASRA. The equatorial Indian Ocean SST has a significantly positive correlation with EASM in spring, while Indian Ocean SST near the bay of Bengal has a positive relationship in summer for the post-period. Also the interdecadal variation of the correlation between Indian Ocean SST and EASRA is significant, but that between EASRA and the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) is not. Atmospheric general circulation model (AGCM) test results show the pattern of increased precipitation in the zonal belt region including South Korea and Japan and the pattern of decreased precipitation in the northeastern part of Asia, which are similar to the real climate. The increase of the precipitation in August from the model run is also similar to the real climate variation. Model results indicate that the Indian Ocean SST warming could intensify the convection over the vicinity of the Philippines and the Bay of Bengal, which forces to move northward the convection center. This warming strengthens the EASM and weakens the WNPM.

본 연구에서는 인도양 해수면 온도의 변동성과 1970년 중 후반 이후 동아시아 여름 몬순의 변화의 상관성을 분석하였다. 전반기의 인도양 해수면 온도는 동아시아 여름강수편차(EASRA), 북서태평양 몬순지수(WNPMI)와 상관관계가 거의 없었지만 후반부에서는 인도양 전 부분에 걸쳐 상관관계가 크게 증가하였다. 인도양 해수면 온도와 동아시아 몬순과의 상관성 관계는 봄철과 여름철 각각 지역적으로 차이를 보였다. 봄철의 경우에는 적도 인도양을 중심으로 높은 상관성을 보인 반면 여름철의 경우에는 벵갈만 근처의 인도양에서 높은 상관성을 보였다. 인도양 해수면 온도의 수십년 주기의 변동성은 ENSO의 변동성보다 동아시아 여름 강수편차에 상관성이 높게 나타나고 있으며 따라서 ENSO보다도 인도양 해수면 온도의 변동성이 동아시아 여름몬순에 더 큰 영향을 줄 수 있다. 이러한 인도양 해수면 온도의 수십년주기의 변동성 차이(후반기 해수면 온도와 전반기 해수면 온도의 차이)를 모델의 강제력으로 주고 AGCM실험을 수행하여 그 결과를 비교하였다. 모델 실험 결과 실제 전 후반기 강수량의 차이 패턴인 동아시아 북부의 강수 감소, 한반도와 일본 남부의 강수 증가, 중국 남부의 강수 증가의 패턴이 보였다. 특히 8월의 북서태평양고기압의 확장으로 인한 강수의 증가는 실제 기후변화 차이를 나타낸다. 인도양 해수면 증가로 인한 모델상에서의 대기 순환은 벵갈만-인도양과 북서태평양의 상승기류 중심을 더욱 강화시키는 역할을 해주며 북서태평양에는 고기압성 기류를 강화시키고 동아시아 지역에서는 저기압성 기류를 강화시키는 역할을 한다. 또한 상승기류 중심을 북쪽으로 이동시킨다. 따라서 인도양 해수면 온도의 증가 효과는 동아시아 지역과 북서태평양 지역의 반대위상의 변화를 강화시키는 역할을 하고 있다. 인도양지역별 해수면 온도의 민감성 실험에서는 적도인도양의 강제력의 경우에 북서태평양 상승기류을 강화하여 동아시아 여름몬순에 영향을 주었다.

Keywords

References

  1. Annamalai, H., Liu, P., and Xie, S., 2005, Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. Journal of Climate, 18, 4150-4167 https://doi.org/10.1175/JCLI3533.1
  2. Chang, C., Harr, P., and Ju, J., 2001, Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall-ENSO relationship. Journal of Climate, 14, 2376-2380
  3. Chen, M., Xie, P., Janowiak, J.E., and Arkin, P.A., 2002, Global land precipiation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrome teorology, 3, 249-266 https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2
  4. Ha, K.J., Park, S.K., and Kim, K.Y., 2005, On interannual characteristics of climate prediction center merged analysis precipitation over the Korean peninsula during the summer monsoon season. International Journal of Climatology, 25, 99-116 https://doi.org/10.1002/joc.1116
  5. Ho, C.H., Lee, J.Y., Ahn, M.H., and Lee, H.S., 2003, A sudden change in summer rainfall characteristics in Korea during the late 1970s. International Journal of Climatology, 23, 117-128 https://doi.org/10.1002/joc.864
  6. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R., Joseph, D., 1996, The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society, 77, 437-470 https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  7. Kawamura, R., Matsuura, T.I., and Iizuka, S., 2001, Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Nino Southern Oscillation coupling. Journal of Geophysical Research, 106, 4681-4693 https://doi.org/10.1029/2000JD900610
  8. Kim, J.K., 1999, Parameterization of land surface processes in an atmospheric general circulation model. Ph. D. thesis, Seoul National University, Seoul, Korea, 178 p
  9. Klein, S.A., Soden, B.J., and Lau, N.C., 1999, Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate, 12, 917-932 https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2
  10. Kumar, K.K., Rajagopalan, B., and Cane, M.A., 1999, On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 2156-2159 https://doi.org/10.1126/science.284.5423.2156
  11. Lee, E.J., Jhun, J.G., and Park, C.K., 2005, Remote connection of the northeast Asian summer rainfall variation revealed by a newly defined monsoon index. Journal of Climate, 18, 4381-4393 https://doi.org/10.1175/JCLI3545.1
  12. Nitta, T. and Yamada, S., 1989, Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. Journal of Meteorological Society of Japan, 67, 375-382 https://doi.org/10.2151/jmsj1965.67.3_375
  13. Nitta, T. and Hu, Z.Z., 1996, Summer climate variability in China and its association with 500 hPa height and tropical convection. Journal of Meteorological Society of Japan, 74, 425-445 https://doi.org/10.2151/jmsj1965.74.4_425
  14. Smith, T.M. and Reynolds, R.W., 2004, Improved Extended Reconstruction of SST (1854-1997). Journal of Climate, 17, 2466-2477 https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2
  15. Tao, S.Y. and Chen, L.X., 1987, A review of recent research on the East Asian summer monsoon in China. In Chang, C.P. and Krishnamurti, T.N. (eds.), Monsoon Meteorology. Oxford University Press, UK, 60-92
  16. Uppala, S.M., Kallberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., H lm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J., 2005, The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 2961-3012 https://doi.org/10.1256/qj.04.176
  17. Wang, B., 1995, Interdecadal changes in El Nino onset in the last four decades. Journal of Climate, 8, 267-285 https://doi.org/10.1175/1520-0442(1995)008<0267:ICIENO>2.0.CO;2
  18. Wang, B. and Fan, Z., 1999, Choice of South Asian summer monsoon indices. Bulletin of American Meteorological Society, 80, 629-638 https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2
  19. Wang, B., Wu, R., and Lau, K.M., 2001, Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western north Pacific-east Asian monsoons. Journal of Climate, 14, 4073-4090 https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
  20. Watanabe, M. and Jin, F.F., 2002, Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophysical Research Letters, 29, 116/1-116/4
  21. Webster, P.J., Magan.a, V.O., Palmer, T.N., Tomas, R.A., Yanai, M., and Yasunari, T., 1998, Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103, 14451-14510 https://doi.org/10.1029/97JC02719
  22. Wu, R. and Wang, B., 2002, A contrast of the East Asian summer monsoon-ENSO relationship between 1962-77 and 1978-93. Journal of Climate, 8, 3266-3279
  23. Yun, W.T., Park, C.K., Lee, J.W., Lee, H.S., and Min, S.K., 2001, Analysis of the Korean heavy rainfall in summer 1998. Journal of the Korean Meteorological Society, 37, 181- 194
  24. Zhang, R.H. and Sumi, A., 1999, A diagnostic study of the impact of El Nino on the precipitation in China. Advances in Atmospheric Sciences, 16, 229-241 https://doi.org/10.1007/BF02973084
  25. Zhang, Y., Wallace, J.M., and Battisti, D.S., 1997, ENSOlike interdecadal variability; 1900-93. Journal of Climate, 10, 1004-1020 https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2

Cited by

  1. Relationship of South China Sea summer monsoon with ENSO vol.24, pp.6, 2015, https://doi.org/10.5322/JESI.2015.24.6.827