• Title/Summary/Keyword: Monsoon Climate

Search Result 165, Processing Time 0.029 seconds

The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological Mean Bias Characteristics (기상청 기후예측시스템(GloSea6) - Part 2: 기후모의 평균 오차 특성 분석)

  • Hyun, Yu-Kyung;Lee, Johan;Shin, Beomcheol;Choi, Yuna;Kim, Ji-Yeong;Lee, Sang-Min;Ji, Hee-Sook;Boo, Kyung-On;Lim, Somin;Kim, Hyeri;Ryu, Young;Park, Yeon-Hee;Park, Hyeong-Sik;Choo, Sung-Ho;Hyun, Seung-Hwon;Hwang, Seung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.87-101
    • /
    • 2022
  • In this paper, the performance improvement for the new KMA's Climate Prediction System (GloSea6), which has been built and tested in 2021, is presented by assessing the bias distribution of basic variables from 24 years of GloSea6 hindcasts. Along with the upgrade from GloSea5 to GloSea6, the performance of GloSea6 can be regarded as notable in many respects: improvements in (i) negative bias of geopotential height over the tropical and mid-latitude troposphere and over polar stratosphere in boreal summer; (ii) cold bias of tropospheric temperature; (iii) underestimation of mid-latitude jets; (iv) dry bias in the lower troposphere; (v) cold tongue bias in the equatorial SST and the warm bias of Southern Ocean, suggesting the potential of improvements to the major climate variability in GloSea6. The warm surface temperature in the northern hemisphere continent in summer is eliminated by using CDF-matched soil-moisture initials. However, the cold bias in high latitude snow-covered area in winter still needs to be improved in the future. The intensification of the westerly winds of the summer Asian monsoon and the weakening of the northwest Pacific high, which are considered to be major errors in the GloSea system, had not been significantly improved. However, both the use of increased number of ensembles and the initial conditions at the closest initial dates reveals possibility to improve these biases. It is also noted that the effect of ensemble expansion mainly contributes to the improvement of annual variability over high latitudes and polar regions.

Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea (황해와 동중국해에서의 유의파고와 파향의 시공간 변동성)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Do-Seong Byun;Hyun-Ju Oh
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Oceanic wind waves have been recognized as one of the important indicators of global warming and climate change. It is necessary to study the spatial and temporal variability of significant wave height (SWH) and wave direction in the Yellow Sea and a part of the East China Sea, which is directly affected by the East Asian monsoon and climate change. In this study, the spatial and temporal variability including seasonal and interannual variability of SWH and wave direction in the Yellow Sea and East China Sea were analyzed using European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) data. Prior to analyzing the variability of SWH and wave direction using the model reanalysis, the accuracy was verified through comparison with SWH and wave direction measurements from Ieodo Ocean Science Station (I-ORS). The mean SWH ranged from 0.3 to 1.6 m, and was higher in the south than in the north and higher in the center of the Yellow Sea than in the coast. The standard deviation of the SWH also showed a pattern similar to the mean. In the Yellow Sea, SWH and wave direction showed clear seasonal variability. SWH was generally highest in winter and lowest in late spring or early summer. Due to the influence of the monsoon, the wave direction propagated mainly to the south in winter and to the north in summer. The seasonal variability of SWH showed predominant interannual variability with strong variability of annual amplitudes due to the influence of typhoons in summer.

Yield Comparison Simulation between Seasonal Climatic Scenarios for Italian Ryegrass (Lolium Multiflorum Lam.) in Southern Coastal Regions of Korea (우리나라 남부해안지역에서 이탈리안 라이그라스에 대한 계절적 기후시나리오 간 수량비교 시뮬레이션)

  • Kim, Moonju;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • This study was carried out to compare the DMY (dry matter yield) of IRG (Italian ryegrass) in the southern coastal regions of Korea due to seasonal climate scenarios such as the Kaul-Changma (late monsoon) in autumn, extreme winter cold, and drought in the next spring. The IRG data (n = 203) were collected from various Reports for Collaborative Research Program to Develop New Cultivars of Summer Crops in Jeju, 203 Namwon, and Yeungam from the Rural Development Administration - (en DASH). In order to define the seasonal climate scenarios, climate variables including temperature, humidity, wind, sunshine were used by collected from the Korean Meteorological Administration. The discriminant analysis based on 5% significance level was performed to distinguish normal and abnormal climate scenarios. Furthermore, the DMY comparison was simulated based on the information of sample distribution of IRG. As a result, in the southern coastal regions, only the impact of next spring drought on DMY of IRG was critical. Although the severe winter cold was clearly classified from the normal, there was no difference in DMY. Thus, the DMY comparison was simulated only for the next spring drought. Under the yield comparison simulation, DMY (kg/ha) in the normal and drought was 14,743.83 and 12,707.97 respectively. It implies that the expected damage caused by the spring drought was about 2,000 kg/ha. Furthermore, the predicted DMY of spring drought was wider and slower than that of normal, indicating on high variability. This study is meaningful in confirming the predictive DMY damage and its possibility by spring drought for IRG via statistical simulation considering seasonal climate scenarios.

Characteristics of Air Stagnation over the Korean Peninsula and Projection Using Regional Climate Model of HadGEM3-RA (한반도 대기정체의 특성 및 지역기후모델 HadGEM3-RA를 이용한 미래 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Kim, Tae-Jun;Byon, Jae-Young;Kim, Jin-Won;Kwon, Sang-Hoon;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.377-390
    • /
    • 2020
  • Not only emissions, but also atmospheric circulation is a key factor that affects local particulate matters (PM) concentrations in Korea through ventilation effects and transboundary transports. As part of the atmospheric circulation, air stagnation especially adversely affects local air quality due to weak ventilation. This study investigates the large-scale circulation related to air stagnation over Korea during winter and projects the climate change impacts on atmospheric patterns, using observed PM data, reanalysis and regional climate projections from HadGEM3-RA with Modified Korea Particulate matter Index. Results show that the stagnation affects the PM concentration, accompanied by pressure ridge at upper troposphere and weaken zonal pressure gradient at lower troposphere. Downscaling using HadGEM3-RA is found to yield Added-Value in the simulated low tropospheric winds. For projection of future stagnation, SSP5-8.5 and SSP1-2.6 (high and low emission) scenarios are used here. It has been found that the stagnation condition occurs more frequently by 11% under SSP5-8.5 and by 5% under SSP1-2.6 than in present-day climate and is most affected by changes in surface wind speed. The increase in the stagnation conditions is related to anticyclonic circulation anomaly at upper troposphere and weaken meridional pressure gradient at lower troposphere. Considering that the present East Asian winter monsoon is mainly affected by change in zonal pressure gradient, it is worth paying attention to this change in the meridional gradient. Our results suggest that future warming condition increase the frequency of air stagnation over Korea during winter with response of atmospheric circulation and its nonlinearity.

Evaluation of Reproduced Precipitation by WRF in the Region of CORDEX-East Asia Phase 2 (CORDEX-동아시아 2단계 영역 재현실험을 통한 WRF 강수 모의성능 평가)

  • Ahn, Joong-Bae;Choi, Yeon-Woo;Jo, Sera
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.85-97
    • /
    • 2018
  • This study evaluates the performance of the Weather Research and Forecasting (WRF) model in reproducing the present-day (1981~2005) precipitation over Far East Asia and South Korea. The WRF model is configured with 25-km horizontal resolution within the context of the COordinated Regional climate Downscaling Experiment (CORDEX) - East Asia Phase 2. The initial and lateral boundary forcing for the WRF simulation are derived from European Centre for Medium-Range Weather Forecast Interim reanalysis. According to our results, WRF model shows a reasonable performance to reproduce the features of precipitation, such as seasonal climatology, annual and inter-annual variabilities, seasonal march of monsoon rainfall and extreme precipitation. In spite of such model's ability to simulate major features of precipitation, systematic biases are found in the downscaled simulation in some sub-regions and seasons. In particular, the WRF model systematically tends to overestimate (underestimate) precipitation over Far East Asia (South Korea), and relatively large biases are evident during the summer season. In terms of inter-annual variability, WRF shows an overall smaller (larger) standard deviation in the Far East Asia (South Korea) compared to observation. In addition, WRF overestimates the frequency and amount of weak precipitation, but underestimates those of heavy precipitation. Also, the number of wet days, the precipitation intensity above the 95 percentile, and consecutive wet days (consecutive dry days) are overestimated (underestimated) over eastern (western) part of South Korea. The results of this study can be used as reference data when providing information about projections of fine-scale climate change over East Asia.

Spatial and Temporal Variations in the Water Use Efficiency and its Drought Signal on the Korean Peninsula using MODIS-derived Products (MODIS 영상을 활용한 한반도의 시공간적 물 이용효율 변동 및 가뭄과의 연관성 분석)

  • Kim, Jeongbin;Ho, Hyunjoo;Um, Myoung-Jin;Kim, Yeonjoo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.553-564
    • /
    • 2018
  • Water use efficiency (WUE) is the amount of carbon uptake per unit of water use, which is a key measure of the functions of terrestrial ecosystems, as it is related to both the hydrologic and carbon cycles. Furthermore, it can vary with many factors, such as climate conditions and land cover characteristics, in different regions. In this study, we aim to understand the spatial and temporal variations in WUE on the Korean Peninsula as well as the associated response to drought. The Moderate Resolution Imaging Spectroradiometer (MODIS)-derived gross primary productivity (GPP) and evapotranspiration (ET) datasets and climate data were used to derive a drought index. Based on the monthly WUE, we found that WUE decreased during the monsoon summer in all regions and for all vegetation types. Furthermore, the annual WUE was negatively correlated with the drought index, with increasing correlation coefficients from the northern region to the southern region of the Korean Peninsula.

Analysis of Baseflow Contribution based on Time-scales Using Various Baseflow Separation Methods (다양한 기저유출 분리 방법을 이용한 4대강 수계의 시간대별 (연·계절·월) 기저유출 기여도 분석)

  • Lee, Seung Chan;Kim, Hui Yeon;Kim, Hyo Jeong;Han, Jeong Ho;Kim, Seong Joon;Kim, Jonggun;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • The analysis of baseflow contribution is very significant in Korea because most rivers have high variability of streamflow due to the monsoon climate. Recently, the importance of such analysis is being more evident especially in terms of river management because of the changing pattern of rainfall and runoff resulted from climate change. Various baseflow separation methods have been developed to separate baseflow from streamflow. However, it is very difficult to identify which method is the most accurate way due to the lack of measured baseflow data. Moreover, it is inappropriate to analyze the annual baseflow contribution for Korean rivers because rainfall patterns varies significantly with the seasons. Thus, this study compared the baseflow contributions at various time-scales (annual, seasonal and monthly) for the 4 major river basins through BFI (baseflow index) and suggested baseflow contribution of each basin by the BFI ranges searched from different baseflow separation methods (e.g., BFLOW, HYSEP, PART, WHAT). Based on the comparison of baseflow contributions at the three time scales, this study showed that the baseflow contributions from the monthly and seasonal analysis are more reasonable than that from the annual analysis. Furthermore, this study proposes that defining BFI with its range is more proper than a specific value for a watershed, considering the difference of BFIs between various baseflow separation methods.

Pollutant Load Characteristics of a Rural Watershed of Juam Lake (주암호 농촌 소유역 오염부하특성)

  • Han, Kuk-Heon;Yoon, Kwang-Sik;Jung, Jae-Woon;Yoon, Suk-Gun;Kim, Young-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.77-86
    • /
    • 2005
  • A monitoring study has been conducted to identify hydrologic conditions, water quality and nutrient loading characteristics of small watershed in Juam Lake. Climate data of the watershed were collected; flow rate was measured and water quality sampling was conducted at the watershed outlet for this study. Water quality data revealed that T-P concentrations meet I grade of lake water quality standard during non-storm period, but degraded up to II-III grade of lake water quality standard during storm period. The observed T-N concentrations always exceeded lake water quality standard. Therefore, T-P was identified as limiting chemical constituent for eutrophication of Juam Lake. T-P concentration of non-storm period also revealed that point source pollution is not serious in the watershed. Three year monitoring results showed that the observed T-N losses were $10.85\~18.88$ kg/ha and T-P losses were $0.028\~0.323$ kg/ha during six month (Mar. - Oct.), respectively. Major portion of runoff amount discharged by a few storm events a year and nutrient load showed apparent seasonal variation. Huge runoff amounts were generated by intense storms, which make application of water treatment or detention facilities ineffective. Monitoring results confirmed that water quality improvement by abating nonpoint source pollution in rural watershed of monsoon climate should be focused on source control. T-P losses from paddy field seemed to consist of significant amount of total load from study watershed. Therefore, management of drainage from paddy field is considered to be important for preventing algal blooming problem in Juam Lake.

Evaluation of MODIS Gross Primary Production (GPP) by Comparing with GPP from CO2 Flux Data Measured in a Mixed Forest Area (설마천 유역 CO2 Flux 실측 자료에 의한 총일차생산성 (GPP)과 MODIS GPP간의 비교 평가)

  • Jung, Chung-Gill;Shin, Hyung-Jin;Park, Min-Ji;Joh, Hyung-Kyung;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this study, In order to evaluate reliable of MODIS GPP, the MODIS GPP and Flux tower measured GPP were compared to evaluate the use of method on 8 days composite MODIS GPP. The 2008 Flux data ($CO_2$ Flux and air temperature) measured in Seolmacheon watershed ($8.48\;km^2$) were used. The Flux tower GPP was estimated as the sum of $CO_2$ Flux and $R_{ec}$ (ecosystem respiration) by Lloyd and Taylor method (1994). The summer Monsoon period from June to August mostly contributed the underestimation of MODIS GPP by cloud contamination on MODIS pixels. The 2008 MODIS GPP and Flux tower GPP of the watershed were $1133.2\;g/m^2/year$ and $1464.3\;g/m^2/year$ respectively and the determination coefficient ($R^2$) after correction of cloud-originated errors was 0.74 (0.63 before correction). Even though effect of Cloud-Originated Errors was eliminated, Solar radiation and Temperature are affected at GPP. Measurement of correct GPP is difficult. But, If errors of MODIS GPP analyze on Cloud Moonsoon Climate in korea and eliminated effect of Cloud-Originated Errors, MODIS GPP will be considered GPP increasing of 9 %. There, Our results indicate that MODIS GPP show reliable and useful data except for summer period in Moonsoon Climate.

Features and Interpretation of Olfactory and Gustatory Disorders in the Corona Virus Disease-19 (코로나바이러스감염증-19에서 나타나는 후미각손상의 특성과 한의학적 분석)

  • Chi, Gyoo-yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.6
    • /
    • pp.309-318
    • /
    • 2020
  • Besides respiratory infection, COVID-19 has many neurological symptoms not only loss of smell and taste but also fatigue and brain fog. But it is a challenge to treat the neurological symptoms especially of anosmia and ageusia. In order to search for the therapeutic methods, the geographical diversity and pathological mechanisms of the COVID-19 and two symptoms were investigated from the latest clinical studies. Because the environmental conditions of the monsoon climate zone of East Asia and the Mediterranean and Oceanic climate zone of Italy, Britain, United States and tropical Brazil are different, each of diverse etiology and internal milieu should be considered differently in the treatment. SARS-CoV-2 exhibits the dampness-like characteristics and the olfactory and gustatory disorders are particularly more common than other flu or cold. and it tends to show features of damaging the lung qi of olfaction and heart-spleen qi of gustation. The mechanisms of olfactory and gustatory loss are various according to precursory, inflammatory, non-inflammatory and sequelar forms, so the therapeutic method should be designed for each period and pathology. If the process of inflammation arises from nasal and respiratory, olfactory epithelium to the central nervous structure by way of blood brain barrier, the treatment should be corresponded with the stage and depth of pathogen place. And if the olfactory loss is asymptomatic or in the initial stage, it can be applied intranasal topical scent therapy to relieve temporary locking of qi movement, but maybe also used in parallel together with herbs of relieving dampness toxin latent in the lung parenchyma.