• 제목/요약/키워드: Monotonic loading

검색결과 363건 처리시간 0.03초

Effect of Loading Rate on the Fracture Behavior of Nuclear Piping Materials Under Cyclic Loading Conditions

  • Kim, Jin Weon;Choi, Myung Rak;Kim, Yun Jae
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1376-1386
    • /
    • 2016
  • This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to understand clearly the fracture behavior of piping materials under seismic conditions. J-R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature and the operating temperature of nuclear power plants (i.e., $316^{\circ}C$). SA508 Gr.1a low-alloy steel and SA312 TP316 stainless steel piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 stainless steel was independent of the loading rate at both room temperature and $316^{\circ}C$. For SA508 Gr.1a lowalloy steel, the loading rate effect on the fracture behavior was appreciable at $316^{\circ}C$ under cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio of the load (R) was -1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = -1 at a quasistatic loading rate.

Buckling behavior of cold-formed steel lipped channel beam-column members under monotonic and cyclic loadings

  • Yilmaz Yilmaz;Serhat Demir;Ferhan Ozturk
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.435-446
    • /
    • 2024
  • The use of cold-formed steel members is increasing day by day, especially in regions where earthquake effects are intensively experienced. Among cold-formed steel members (CFS), "channel" members are used more than other crosssectional members, especially in buildings or industrial structures. In recent years, several studies have been carried out on the axial load and flexural performance of these members under monotonic loading. In this study, CFS beam-column members were cyclically and monotonically loaded under combined axial load and biaxial bending moments, and their buckling behavior, load bearing capacity, stiffness, ductility, and energy absorption capacity were determined. For this purpose, monotonic and cyclic loading experiments were carried out on 30 CFS channel members at 15 different eccentricities. Then, material properties were determined by axial monotonic tensile and very low cycle fatigue tests for use in numerical studies. From the experimental results, the buckling modes, bearing capacities, ductility, stiffness, and energy absorption capacities of the members were obtained. The characteristics of the members were compared according to the stress state of the lips. According to the data obtained from the displacement transducer placed on the lips and on the back of the web, information about the buckling mode and curvature of the members was obtained. Finally, monotonic, and cyclic loading results were compared to determine the differences in the buckling behavior of the members.

반복하중을 받는 CFS로 보강된 R/C 보의 휨 강성 평가 (Estimation of Flexural Rigidity of R/C Beam Strengthened with CFS subjected to repeated loadings)

  • 김충호;장종완
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.231-238
    • /
    • 2004
  • R/C교량에서 진행성 균열과 과도한 처짐에 의한 휨 내력의 저하는 차량하중에 의한 동적 반복하중으로부터 발생한다. 이러한 사실은 정적인 단조증가 하중 재하실험으로부터 획득한 자료의 동적 반복하중에서의 확인과 평가의 필요성을 제기한다. 따라서, 본 연구는 CFS로 보강된 R/C보를 단조증가하중 재하실험과 반복하중 재하실험을 동시에 수행하였다. 동적 반복하중 재하실험에 의하여, 단조증가하중 재하실험에 의한 결과의 타당성 및 적합성을 확인하고 반복하중에 의한 모멘트-곡률, 휨 강도의 감소, 균열 및 파괴 특성 등을 평가하였다.

정적하중 상태에서 포화된 실트질 모래의 액상화 거동 (Liquefaction Behaviour of Saturated Silty Sand Under Monotonic Loading Conditions)

  • 이달원
    • 한국농공학회논문집
    • /
    • 제48권4호
    • /
    • pp.67-74
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour of saturated silty sand under monotonic loading conditions. The undrained soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. Undrained triaxial compression tests were performed at different confining pressures, void ratios and overconsolidation ratios and the samples were sheared to axial strains of about 20% to obtain monotonic loading conditions. It is shown that increasing confining pressures, void ratios and overconsoildation ratios increases the deviator stress, but it has no effect on increasing the dilatant tendencies. It is shown that complete static liquefaction was observed regardless of increases in the confining pressure, void ratio and overconsolidation ratio. Therefore, the confining pressure, void ratio and overconsoildation ratio does not provide significant effects on the liquefaction resistance of the silty sand. The presence of fines in the soil was shown to greatly increase the potential for static liquefaction and creates a particle structure with high compressibility for all cases.

Performance of cyclic loading for structural insulated panels in wall application

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제14권6호
    • /
    • pp.587-604
    • /
    • 2013
  • There are few technical documents regulated structural performance and engineering criteria in domestic market for Structural insulated panels in Korea. This paper was focused to identify fundamental performance under monotonic loading and cyclic loading for SIPs in shear wall application. Load-displacement responses of total twelve test specimens were recorded based on shear stiffness, strength, ultimate load and displacement. Finally energy dissipation of each specimen was analyzed respectively. Monotonic test results showed that ultimate load was 44.3 kN, allowable shear load was 6.1 kN/m, shear stiffness was 1.2 MN/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic loading results, which were equivalent to monotonic loading results, showed that ultimate load was 45.4 kN, allowable shear load was 6.3 kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. Based on results of structural performance test, it was recommended that the allowable shear load for panels should be 6.1 kN/m at least.

Characteristics of Pressure Confined Concrete under Monotonic Compression

  • Rhim, Hong-Chul;Buyukozturk, Oral;Soon, K. A;Kim, Gwang-Ho
    • KCI Concrete Journal
    • /
    • 제13권1호
    • /
    • pp.53-60
    • /
    • 2001
  • Tests of cylindrical concrete specimens under lateral confining pressure of up to 5,000 psi were conducted for two different axial loading cases: monotonic compression and monotonic tension. The purpose of this experimental investigation is to provide stress-strain characteristics of plain concrete in triaxial stress conditions. Lateral confining pressure levels, loading rates, and strength of concrete specimens are varied as parameters. The loading rates are $34.75$\times$10^{-5}$ in/in/sec for fast, $\times$$6.95x10^{-5}$ in/in/sec for normal. and $0.579$\times$10^{-5}$ in/in/sec for slow loading cases. The concrete specimens used in the experiment have compressive strength of 3,500 psi and 6,500 psi, respectively. Findings of this experiment include dependency of the stress-strain behavior of concrete on the above parameters under two different types of loading conditions. The parametric study includes a series of 106 triaxial tests.

  • PDF

순수 알루미늄의 판재압연 및 공형압연시 가공경로에 따른 변형분포와 기계적 성질의 예측 (Study of the Effect of Loading Path on the Strain and Mechanical Properties of Aluminum with Flat and Groove Rolling Experiment)

  • 김성일;변상민
    • 소성∙가공
    • /
    • 제17권6호
    • /
    • pp.420-428
    • /
    • 2008
  • The effect of loading path changes on the strain and mechanical properties of a commercial pure aluminum was studied using flat rolling and groove rolling. Material during flat rolling undergoes a continuous monotonic compressive loading, while one during groove rolling experiences a series of cross compressive loading. Four-pass flat rolling and groove rolling experiment are designed such that the aluminum undergoes the same amount of the strain at each pass. The rolling experiment was performed at room temperatures. Specimens for tensile test are fabricated from the plate and bar rolled. In addition, the strain distribution for the plate and bar cold rolled specimens is also calculated by finite element method. The results reveal that differences of loading path attributed by monotonic loading(flat rolling) and cross loading(groove rolling) significantly influence the mechanical properties such as yield stress, ultimate tensile stress, strain hardening and elongation. It is clear that the different loading path can give raise to change the deformation history, although it is deformed with same amount of strain for same material.

단조 및 반복하중 하에서의 모사 암석 시료의 임계하 균열성장 지수에 관한 연구 (A Study on Subcritical Crack Growth Parameters in Rock-like Material under Monotonic and Cyclic Loading)

  • 고태영
    • 터널과지하공간
    • /
    • 제29권2호
    • /
    • pp.124-134
    • /
    • 2019
  • 암석에서의 임계하 균열성장은 단조 및 반복하중 하에서 일어날 수 있다. 임계하 균열 성장은 암반에 건설되는 지하구조물의 장기 안정성의 평가에 큰 영향을 미친다. 본 연구에서는 모사 암석 시료를 사용하여 단조 및 반복하중 하에서의 임계하 균열성장 지수를 구하였다. 단조하중 조건에서는 일정 응력 속도법이 적용되었으며, 반복하중에 의한 임계하 균열성장 지수는 반복에 의한 균열성장 속도와 응력확대계 수폭의 관계를 이용하였다. 연구에 사용된 시험편은 $45^{\circ}$$60^{\circ}$의 균열 경사각을 가지고 있으며, 균열의 간격 및 연속성에 변화를 주어 전단 또는 인장에 의한 균열성장이 가능하도록 하여 전단 또는 인장에 의한 임계하 균열성장 지수도 구하였다. 그 결과, 임계하 균열성장 지수 n은 작용하는 하중 조건, 즉 단조 및 반복하중, 혹은 전단 및 인장에 관계없이 거의 일정한 값을 나타내었다.

Behavior modeling and damage quantification of confined concrete under cyclic loading

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.625-635
    • /
    • 2017
  • Sets of nonlinear formulations together with an energy-based damage index (DI) are proposed to model the behavior and quantify the damage of the confined and unconfined concretes under monotonic and cyclic loading. The proposed formulations and DI can be employed in numerical simulations to determine the stresses and the damages to the fibers or the layers within the sections of reinforced concrete (RC) components. To verify the proposed formulations, an adaptive finite element computer program was generated to simulate the RC structures subjected to monotonic and cyclic loading. By comparing the simulated and the experimental test results, on both the full-scale structural members and concrete cylindrical samples, the proposed uniaxial behavior modeling formulations for confined and unconfined concretes under monotonic and cyclic loading, based on an iterative process, were accordingly adjusted, and then validated. The proposed formulations have strong mathematical structures and can readily be adapted to achieve a higher degree of precision by improving the relevant coefficients based on more precise tests. To apply the proposed DI, the stress-strain data of concrete elements is required. It can easily be calculated by using the proposed nonlinear constitutive laws for confined and unconfined concretes in this paper.

Dynamic bending behaviours of RC beams under monotonic loading with variable rates

  • Xiao, Shiyun;Li, Jianbo;Mo, Yi-Lung
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.339-350
    • /
    • 2017
  • Dynamic behaviours of reinforced concrete (RC) bending beams subjected to monotonic loading with different loading rates were studied. A dynamic experiment was carried out with the electro-hydraulic servo system manufactured by MTS (Mechanical Testing and Simulation) Systems Corporation to study the effect of loading rates on the mechanical behaviours of RC beams. The monotonic displacement control loading, with loading rates of 0.1 mm/s, 0.5 mm/s, 1 mm/s, 5 mm/s and 10 mm/s, was imposed. According to the test results, the effects of loading rates on the failure model and load-displacement curve of RC beams were investigated. The influences of loading rates on the cracking, ultimate, yield and failure strengths and displacements, ductility and dissipated energy capability of RC beams were studied. Then, the three-dimensional finite element models of RC beams, with the rate-dependent DP (Drucker-Prager) model of concrete and three rate-dependent model of steel reinforcement, were described and verified using the experimental results. Finally, the dynamic mechanical behaviours and deformation behaviours of the numerical results were compared with those of the experimental results.