• Title/Summary/Keyword: Monopropellant Rocket Engine

Search Result 16, Processing Time 0.019 seconds

Hot Firing Performances of 1 lbf-Liquid Monopropellant Rocket Engine under the Environment of High Altitude Simulated (고공모사 환경에서의 1 Ibf급 단일액체추진제 로켓엔진 연소성능시험)

  • 김정수;한조영;이균호;황도순;장기원;이재원;강주성;정종록;조대기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.189-192
    • /
    • 2003
  • This paper summarizes a satellite program-specific performance requirements and test results for the verification of standard mono-propellant hydrazine thruster (MRE-1) producing 0.95 lbf (4.2 Newtons) nominal steady-state thrust at an inlet pressure of 350 psia (2.41 Mpa). Performance characteristics are shown in terms of thrust behavior at steady state and pulse mode firing. Hot firing test philosophy is briefly introduced, too.

  • PDF

Test & Evaluation for the Configuration Optimization of Thrust Chamber in 70 N-class N2H4 Thruster (Part II: Pulse-mode Performance According to the Chamber Length Variation) (70 N급 하이드라진 추력기의 추력실 최적설계와 시험평가 (Part II: 추력실 길이변화에 따른 펄스모드 성능특성))

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-57
    • /
    • 2014
  • A ground hot-firing test (HFT) was conducted to take out the optimal design configurations for the thrust chamber of 70 N-class liquid rocket engine under development. Monopropellant grade (purity: ${\geq}98.5%$) hydrazine was adopted as a propellant for the HFT, and three kinds of thrust chambers having characteristic lengths ($L^*$) of 2.79, 2.95, and 3.13 m were selected for their performance evaluation. It is revealed through the test and evaluation that the increase of the $L^*$ leads to a performance degradation in the test condition specified, and pulse response performance of the development model shows superior characteristics to commercialized hydrazine thrusters.

A Development of the Thrusters for Space-Vehicle Maneuver/ACS and Their Application to Launch Vehicles (우주비행체 궤도기동/자세제어용 추력기의 개발과 발사체에의 활용현황)

  • Kim, Jeong-Soo;Jung, Hun;Kam, Ho-Dong;Seo, Hang-Seok;Su, Hyuk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.103-120
    • /
    • 2010
  • A development history of the thrusters used for space-vehicle orbit maneuver/attitude control is reviewed with their performance characteristics. Especially, a scrutiny is made for the current and practical application of TVC/Gimbal/Thrusters to the roll/pitch/yaw-axis control of each stage of launch vehicles. It is well perceived that a precise 3-axis attitude control system (ACS) must be equipped on the final stage of space launch vehicles (SLV) for an attainment of orbit-insertion accuracy. Under the superior reliability as well as moderate performance features, the monopropellant hydrazine thrusters occupy most of the SLV's 3-axis ACS currently operated. Domestic development status of the medium-thrust-level thruster is shortly introduced, finally.

Hot-Fire Test and Performance Evaluation of Small Liquid-Monopropellant Thrusters under a Vacuum Environment (단일액체추진제 소형 추력기의 진공환경 연소시험 및 성능특성 평가)

  • Kim Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.84-90
    • /
    • 2004
  • A performance evaluation is made in terms of thrust, impulse bit. and specific impulses for a set of mono-propellant hydrazine thrusters producing 0.95 lbf of nominal thrust at an inlet pressure of 350 psia. With a brief description on the hot-firing test configuration and procedures. a typical data obtained from steady-state firing mode is given directly showing the variational behavior of propellant supply pressure, mass flow rate, vacuum condition, and thrust. The performance features are successfully compared to the reference criteria of 1-lbf standard mono-propellant rocket engine. Additionally. a statistical inter-thruster treatment is concisely depicted for the justification of selected thrusters as a grouped member of flight model for spacecraft propulsion system.

Conceptual Design of Underwater Jet Propulsion System using Catalytic Decomposition of Hydrogen Peroxide (과산화수소의 촉매 분해를 활용한 수중 제트 추진 시스템 개념 설계)

  • Baek, Seungkwan;Kang, Hongjae;Ahn, Byeonguk;Yun, Yongtae;Lee, Jaeho;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.120-127
    • /
    • 2017
  • High temperature oxygen and water vapor was generated from catalytic decomposition of rocket grade highly concentrated hydrogen peroxide, and monopropellant thruster system was developed and applied into space propulsion system. In this research, background research and conceptual design of underwater propulsion system using catalytic decomposition of hydrogen peroxide was progressed. Two types of system was designed with different steam injection methods. Propulsion system that has ring-type steam injector was manufactured and performance estimation of system was performed with different nozzle exit area. Performance evaluation with central steam injection type jet engine will be progressed in the future.

  • PDF

Pulse-mode Response Characteristics of a Small LRE for the Precise 3-axes Control of Flight Attitude in SLV (우주발사체의 비행자세 3축 정밀제어를 위한 소형 액체로켓엔진의 펄스모드 응답특성)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo;Bae, Dae Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A liquid-monopropellant hydrazine thruster has several outstanding advantages such as relatively-simple structure, long/stable propellant storability, clean exhaust products, and so on. Therefore hydrazine thruster has such a wide application as orbit and attitude control system (ACS) for space vehicles. A hydrazine thruster with the medium-level thrust to be used in the ACS of space launch vehicles (SLV) has been developed, and its ground firing test result is presented in terms of thrust, impulse bit, temperature, and chamber pressure. It is verified through the performance test that the response and repeatability of thrust are very excellent, and the thrust efficiencies compared to its ideal requirement are larger than 93%.