• Title/Summary/Keyword: Monolithic structure

Search Result 176, Processing Time 0.03 seconds

Design of 60 ㎓ Millimeter-Wave Frequency Doubler using Distributed Structure

  • Park, Won;Lee, Kang-Ho;Kim, Sam-Dong;Park, Hyung-Moo;Rhee, Jin-Koo;Koo, Kyung-Heon
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.87-92
    • /
    • 2004
  • A millimeter-wave distributed frequency doubler has been designed with distributed block and frequency tunable output reflectors. The simulated conversion loss of 9.5 ㏈ to 7.7 ㏈ from 54.6 ㎓ to 62.4 ㎓ output frequencies is achieved with fundamental and third harmonic signal rejections of more than 10 ㏈c. The fabricated chip has the size of 1.2 mm${\times}$1.0 mm. Some measured results of frequency and bias dependent characteristics are presented for the fabricated PHEMT MMIC frequency doubler. The designed doubler has two transistors, and if one of the transistors fails the doubler unit still operates with reduced gain. The failure effect of the PHEMT has been simulated, and compared to the measured data of which one PHEMT is not operating properly.

A study of DSC using Ultrasonic and Thermal treatment on Photo-Electrode (염료감응형 태양전지 광전극 초음파 열처리에 관한 연구)

  • Hong, Ji-Tae;Kim, Mi-Jeong;Sim, Ji-Yong;Seo, Hyun-Woong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1291-1292
    • /
    • 2007
  • Recently, there were many researches for efficiency improvement of DSC. Among of these works, research of surface treatment is still a prerequisite for electron diffusion, light-harvesting and surface state of DSC.[1] Using of the surface treatment, it can be raise up porosity of $TiO_2$ nano-crystalline structure on photo-electrode. There are chemical, physical, electrical and optical methods which raise up its porosity. In this paper, we have designed and manufactured MOPA-type ultrasonic circuit (100W, frequency and duty variable). Manufactured ultrasonic circuit to use to force cavity density and power into $TiO_2$ paste. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

  • PDF

Fully CMOS-compatible Process Integration of Thin film Inductor with a Sputtered Bottom NiFe Core (스퍼터링 방법으로 증착된 하층 NiFe 코어를 갖는 박막인덕터의 CMOS 집적화 공정)

  • 박일용;김상기;구진근;노태문;이대우;김종대
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2003
  • A double spiral thin-film inductor with a NiFe magnetic core is integrated with DC-DC converter IC. The NiFe core is deposited on a polyimide film as the thinckness of NiFe is 2.5~3.5 ${\mu}$m. Then, copper conductor line is deposited on the NiFe core with double spiral structure. Process integration is performed by sequential processes of etching the polyimide film deposited both top and bottom of the NiFe core and electroplation copper conductor line from exposed metal pad of the DC-DC converter IC. Process integration is simplified by elimination planarization process for top core because the proposed thin-film inductor has a bottom NiFe core only. Inductor of the fabricated monolithic DC-DC converter IC is 0.53 ${\mu}$H when the area of converter IC and thin-film inductor are 5X5$\textrm{mm}^2$ and 3.5X2.5$\textrm{mm}^2$, respectively. The efficiency is 72% when input voltage and output voltage are 3.5 V and 6 V, respectively at the operation frequency of 8 MHz.

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.

Seismic Response Characterization of Shear Wall in Auxiliary Building of Nuclear Power Plant (지진에 의한 원전 보조건물 전단벽의동적 응답 특성 추정)

  • Rahman, Md Motiur;Nahar, Tahmina Tasnim;Baek, Geonhwi;Kim, Dookie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.93-102
    • /
    • 2021
  • The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.

Vertical Z-vibration prediction model of ground building induced by subway operation

  • Zhou, Binghua;Xue, Yiguo;Zhang, Jun;Zhang, Dunfu;Huang, Jian;Qiu, Daohong;Yang, Lin;Zhang, Kai;Cui, Jiuhua
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.273-280
    • /
    • 2022
  • A certain amount of random vibration excitation to subway track is caused by subway operation. This excitation is transmitted through track foundation, tunnel, soil medium, and ground building to the ground and ground structure, causing vibration. The vibration affects ground building. In this study, the results of ANSYS numerical simulation was used to establish back-propagation (BP) neural network model. Moreover, a back-propagation neural network model consisting of five input neurons, one hidden layer, 11 hidden-layer neurons, and three output neurons was used to analyze and calculate the vertical Z-vibration level of New Capital's ground buildings of Qingdao Metro phase I Project (Line M3). The Z-vibration level under different working conditions was calculated from monolithic roadbed, steel-spring floating slab roadbed, and rubber-pad floating slab roadbed under the working condition of center point of 0-100 m. The steel-spring floating slab roadbed was used in the New Capital area to monitor the subway operation vibration in this area. Comparing the monitoring and prediction results, it was found that the prediction results have a good linear relationship with lower error. The research results have good reference and guiding significance for predicting vibration caused by subway operation.

The Study for Cloud-native Application of Public Sector Information System on Considerations during Project Execution (공공부문 정보시스템의 클라우드 네이티브 적용을 위한 적합성 검토방안 및 사업진행 시 고려사항에 대한 연구)

  • Jin Won Choi;Eun Suk Lee
    • Journal of Information Technology Services
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • In accordance with the cloud conversion of public sector information systems and the implementation of cloud native introduction policies, review items were presented to review the cloud native of information systems for stable and efficient cloud native deployment. By presenting cloud native considerations when promoting a project, we propose a plan to flexibly respond to policy and business changes and improve development quality and productivity to operate cloud services stably. In order for information project managers to switch to a cloud-native-based information system in order to efficiently utilize the cloud as a cloud, they must decide whether to introduce cloud-native through suitability review questions and sufficiently review development and operation costs and efficiency to promote the project. As a result of conducting a focus group interview (FGI) with a council of cloud native experts, there was an opinion that information systems can be operated in a cloud-native manner even with a monolithic structure. By fully considering the circumstances of each system, development quality and productivity, we expect to be able to operate improved to provide a stable cloud service.

An Experimental Study on the Characteristics of a Composite Structure of Lattice Girder and Shotcrete (격자지보와 숏크리트 복합구조체의 특성 실험 연구)

  • Mun, Hong-Deuk;Baek, Yeong-Sik;Bae, Gyu-Jin
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.155-168
    • /
    • 1997
  • Lattice girder is a new steel support developed in Europe for the replacement of an existing H-shaped steel set, which is installed after tunnel excavation. Lattice girder has the following several advantages : 1. Lattice girder minimizes the amount of shotcrete shadow which happens to occur behind a steel support. 2. A triangular shape of lattice girder makes shotcrete placed efficiently. 3. Lattice girder provides a good bond strength for shotcrete, which makes the composite structure of lattice girder and shotcrete behave monolithic, and therefore, the rock load can be supported effectively by the lattice girder system, This paper presents the results from a model wall test, a strength test for shotcrete shot on the model wall and a strength test for the bond between lattice girder and shotcrete. These tests proved that lattice-girder system is superior to H-shaped steel-set system concerning the shotcrete rebound rate, the developed shotcrete strength and the adhesion characteristics.

  • PDF

A Low Loss and Short-wavelength Transmission Line Employing Inverted Periodically Arrayed Capacitive Devices and Its Application to Miniaturized Passive Components on MMIC (저손실·단파장 특성을 가지는 반전된 형태의 주기적 용량성 선로구조와 MMIC상의 초소형 수동소자 개발에의 응용)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.149-156
    • /
    • 2012
  • In this study, we propose a novel transmission line employing inverted PACD (Periodically Arrayed Capacitive Devices) for application to a development of miniaturized passive components on MMIC. The novel microstrip line employing Inverted PACD structure showed a loss much lower than conventional microstrip line. Using the inverted PACD structure, we fabricated a miniaturized impedance transformer on MMIC. the size of the impedance transformer was 0.012 $mm^2$, which is only 1.7% of conventional one. The impedance transformer showed good RF performances in a frequency range of 2.25~6.5 GHz.

Design and Fabrication of 40 ㎓ MMIC Double Balanced Star Mixer using Novel Balun (새로운 발룬 회로를 이용한 40 ㎓ 대역 MMIC 이중 평형 Star 혼합기의 설계 및 제작)

  • 김선숙;이종환;염경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.258-264
    • /
    • 2004
  • In this paper, MMIC double balanced star mixer for 40 ㎓ was implemented on GaAs substrate with backside vias. In the design of the MMIC mixer, the design of balun and diode was required. A novel balun structure using microstrip to CPS was presented. The 40 ㎓ balun was designed based on the design experience of the scale-down balun by 2 ㎓. The balun may be suitable for fabrication in MMIC process with backside via and can easily be applied for DBM(Double Balanced Mixer). A Schottky diode was designed and implemented using p-HEMT process considering the compatability with other high frequency MMIC's fabricated on p-HEMT base process. Finally, the double balanced star mixer was fabricated using the balun and the p=HEMP Schottky diode. The measured performance of mixer shows 30 ㏈ conversion loss at 18 ㏈m LO power. This insufficient performance is caused by the unwanted diode at AlGaAs junction in vertical structure of p-HEMT. If the p-HEMT's gate is recessed to AlGaAs layer, and so the diode is eliminated, the mixer's performances will be improved.