• Title/Summary/Keyword: Monoids

Search Result 29, Processing Time 0.023 seconds

ON DIFFERENT KINDS OF INJECTIVITY OF ACTS

  • Naghipoor, Mohammad Ali;Ershad, Majid;Roueentan, Mohammad
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.317-330
    • /
    • 2017
  • In this paper we introduce some new kinds of injectivities, namely, LC (resp. Ind, PInd) injectivity and investigate the relation among various kinds of injectivities. Some classifications of monoids by properties of these kinds of injective acts are presented. Among other results, it is shown that over a principal right ideal monoid, right completely LC-injectivity implies right completely injectivity. Also over a monoid with a zero Ind-injective (resp. PInd-injective) acts are injective.

ON CROSSING NUMBER OF KNOTS

  • Banerjee, S.;Basak, S.;Adhikari, M.R.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.349-356
    • /
    • 2006
  • The aim of this paper is to endow a monoid structure on the set S of all oriented knots(links) under the operation ${\biguplus}$, called addition of knots. Moreover, we prove that there exists a homomorphism of monoids between ($S_d,\;{\biguplus}$) to (N, +), where $S_d$ is a subset of S with an extra condition and N is the monoid of non negative integers under usual addition.

  • PDF

PRESENTATIONS AND REPRESENTATIONS OF SURFACE SINGULAR BRAID MONOIDS

  • Jablonowski, Michal
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.749-762
    • /
    • 2017
  • The surface singular braid monoid corresponds to marked graph diagrams of knotted surfaces in braid form. In a quest to resolve linearity problem for this monoid, we will show that if it is defined on at least two or at least three strands, then its two or respectively three dimensional representations are not faithful. We will also derive new presentations for the surface singular braid monoid, one with reduced the number of defining relations, and the other with reduced the number of its singular generators. We include surface singular braid formulations of all knotted surfaces in Yoshikawa's table.

A ROLE OF SINGLETONS IN QUANTUM CENTRAL LIMIT THEOREMS

  • Accardi, Luigi;Hashimoto, Yukihiro;Obata, Nobuaki
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.675-690
    • /
    • 1998
  • A role of singletons in quantum central limit theorems is studied. A common feature of quantum central limit distributions, the singleton condition which guarantees the symmetry of the limit distributions, is revisited in the category of discrete groups and monoids. Introducing a general notion of quantum independence, the singleton independence which include the singleton condition as an extremal case, we clarify the role of singletons and investigate the mechanism of arising non-symmetric limit distributions.

  • PDF

A MONOID OVER WHICH ALL CYCLIC FLAT RIGHT S-ACTS SATISFY CONDITION (E)

  • L. Moon, Eun-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.395-400
    • /
    • 2008
  • Although the properties of flatness and condition (E) for Sacts over a monoid S are incomparable, Liu([10]) showed that necessary and sufficient condition for a monoid S over which all left S-acts that satisfy condition (E) are flat is the regularity of S. But the problem of describing a monoid over which all cyclic flat left S-acts satisfy condition (E) is still open. Thus the purpose of this paper is to characterize monoids over which all cyclic flat right S-acts satisfy condition (E).

  • PDF

ON SOME OPEN PROBLEMS OF MAHMOUDI AND RENSHAW

  • Qiao, Husheng;Wei, Chongqing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1015-1022
    • /
    • 2014
  • This paper continues the investigation of covers of cyclic acts over monoids. Special attention is paid to (P)-covers and strongly flat covers of cyclic acts. In 2008 Mahmoudi and Renshaw posed some open problems and we gave some examples on them in 2012. In this paper, we obtained some further results on these problems and hence gave some deeper answers to them.

MV -Algebras of Continuous Functions and l-Monoids

  • Choe, Tae-Ho;Kim, Eun-Sup;Kim, Myeong-Og;Park, Young-Soo
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.487-493
    • /
    • 2008
  • A. Di Nola & S.Sessa [8] showed that two compact spaces X and Y are homeomorphic iff the MV -algebras C(X, I) and C(Y, I) of continuous functions defined on X and Y respectively are isomorphic. And they proved that A is a semisimple MV -algebra iff A is a subalgebra of C(X) for some compact Hausdorff space X. In this paper, firstly by use of functorial argument, we show these characterization theorems. Furthermore we obtain some other functorial results between topological spaces and MV -algebras. Secondly as a classical problem, we find a necessary and sufficient condition on a given residuated l-monoid that it is segmenently embedded into an l-group with order unit.

Ideal Classes and Cappell-Shaneson Homotopy 4-Spheres

  • Min Hoon Kim;Shohei Yamada
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.373-411
    • /
    • 2023
  • Gompf proposed a conjecture on Cappell-Shaneson matrices whose affirmative answer implies that all Cappell-Shaneson homotopy 4-spheres are diffeomorphic to the standard 4-sphere. We study Gompf conjecture on Cappell-Shaneson matrices using various algebraic number theoretic techniques. We find a hidden symmetry between trace n Cappell-Shaneson matrices and trace 5 - n Cappell-Shaneson matrices which was suggested by Gompf experimentally. Using this symmetry, we prove that Gompf conjecture for the trace n case is equivalent to the trace 5 - n case. We confirm Gompf conjecture for the special cases that -64 ≤ trace ≤ 69 and corresponding Cappell-Shaneson homotopy 4-spheres are diffeomorphic to the standard 4-sphere. We also give a new infinite family of Cappell-Shaneson spheres which are diffeomorphic to the standard 4-sphere.

A CHARACTERIZATION OF CLASS GROUPS VIA SETS OF LENGTHS

  • Geroldinger, Alfred;Schmid, Wolfgang Alexander
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.869-915
    • /
    • 2019
  • Let H be a Krull monoid with class group G such that every class contains a prime divisor. Then every nonunit $a{\in}H$ can be written as a finite product of irreducible elements. If $a=u_1{\cdot}\;{\ldots}\;{\cdot}u_k$ with irreducibles $u_1,{\ldots},u_k{\in}H$, then k is called the length of the factorization and the set L(a) of all possible k is the set of lengths of a. It is well-known that the system ${\mathcal{L}}(H)=\{{\mathcal{L}}(a){\mid}a{\in}H\}$ depends only on the class group G. We study the inverse question asking whether the system ${\mathcal{L}}(H)$ is characteristic for the class group. Let H' be a further Krull monoid with class group G' such that every class contains a prime divisor and suppose that ${\mathcal{L}}(H)={\mathcal{L}}(H^{\prime})$. We show that, if one of the groups G and G' is finite and has rank at most two, then G and G' are isomorphic (apart from two well-known exceptions).