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A MONOID OVER WHICH ALL CYCLIC FLAT RIGHT
S-ACTS SATISFY CONDITION (E)

EUNHO L. MOON

ABSTRACT. Although the properties of flatness and condition (E) for S-
acts over a monoid S are incomparable, Liu({10]) showed that necessary
and sufficient condition for a monoid S over which all left S-acts that satisfy
condition (E) are flat is the regularity of S. But the problem of describing
a monoid over which all cyclic flat left S-acts satisfy condition (E) is still
open. Thus the purpose of this paper is to characterize monoids over which
all cyclic flat right S-acts satisfy condition (E).
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1. Introduction

For many years, a fruitful area of research in semigroup theory has been the
investigation of properties connected with projectivity of acts over monoids and
we have the following sequence of properties which a given act may or may not
possess, arranged in strictly decreasing order of strength:

free = projective = strongly flat = condition (P) = flat = weakly flat

Many papers have been written describing classes of monoids over which var-
ious of these distinct properties actually coincide. In particular, the problem of
when (weak) flatness implies condition (P) has been studied by several authors
like Renshaw, Liu, or Bulman-Fleming. By a sequence of properties above, there
is no implication between flatness and condition (E). Even if they are incompa-
rable, we investigate the monoids over which these two properties coincide.

Throughout this paper S will denote a monoid. We refer the reader to [1] for
basic definitions and terminologies relating to semigroups and acts over monoids,
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and to [2] for definitions and basic results relating to the various flatness prop-
erties that we consider in this paper.

A right S-act A is said to satisfy condition (P) if whenever au = a'u’ with
u, ' € S, a,a’ € A, there exist a”’ € A, 5,8 € S with a = a”s,0’ = a"s’ and
su = s'u’. A right S-act A is said to satisfy condition(E) if whenever au = au’
with a € A, u,u’ € S, there exist a”’ € A, s € S with a = a"s and su=su'. A .
right S-act that satisfies conditions (P)and (E) is said to be strongly flat.

A right S-act A is called flat if the functor —® A preserves all monomorphisms
and is called weakly flat if — ® A preserves embeddings of right ideals of S into
S.

2. Monoids over which all(cyclic) right S-acts satisfy condition (E)
The following results appeared in [3].

Lemma 1. Let S be a monoid, and let p < q be nonnegative integers and let
z,s,t € S. Then sp(zP,z)t if and only if s =1t or s = zPu,t = zPv,2™u =20
for some u,v € S and some m,n > 0 integers with m = n(mod(q — p)).

Lemma 2. Let p be a right congruence on a monoid S. Then the following
statements are equivalent:

(1) S/p is strongly flat.

(2) S/p satisfies condition (E).

(3) For all s,t € S, spt implies us = ut for some u € S with upl.

Lemma 3. Let S be a monoid and x € S. Then the cyclic right S-act of the form
S/p(z,z?) satisfies condition (E) if and only if x = x2 or x is right invertible.

Proof. If z = 22, then the cyclic right S-act of the form S/p(z, z?) is isomorphic
to S so that it is free. Thus S/p(x, z?) clearly satisfies condition (E). If  is right
invertible, then zy = 1 for some y in S, hence z*p(z, z)1 for all positive integers
k. If zpl, then there are u,v € S such that £ = zu,1 = zv and z"u = z"v for
some integer 7 > 0. Hence

g™ = 1" = 2" (zu) = z(z"u) = z(z™v) = 2" (zv) = 2" 1 = 2",

If s,t are elements of S such that spt, then £™s = z™t for some nonnegative
integers m,n. Since z"t! = z", it induces z"s = z"t, so we take u = z”. Then
us = ut with upl. Hence S/p(x,z?) satisfies condition (E).

For the converse, we assume that S/p(z, z?) satisfies condition (E) with z # z2.
If S/p(z, z?) satisfies condition (E), then there is some u in S such that uz = ux?
with upl. Since if upl, then there are some some s, ¢ in S such that u = xs,1 = xt
and z*s = z*t for some k > 0, z is clearly right invertible. ]
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Lemma 4. Let I be a proper right ideal of a monoid S and let A be Rees right
congruence on S with respect to I. Then the cyclic right S-act S/\; satisfies
condition (E) if and only if | I |= 1.

Proof. If A; is Rees right congruence on S with respect to I, then the set S/A;
of equivalence classes of A; contains equivalence classes I and {z} where z & I.
Hence if | I [= 1, then S/A; 2¢ S and so it is trivial. Conversely, we assume that
S/ Ar satisfies condition (E) and let z,y € I. Then there is some u € S such that
uZ = uy with uAs1. If uA;1, then u = 1, hence uz = uy implies = y. Thus
| I]|=1. O

Liu[7] showed that all cyclic right S-acts satisfy condition (P) if and only if S
is either a group or a group adjoined with 0. We now characterize the monoid
over which all cyclic right S-acts satisfy condition (E).

Theorem 1. Let S be a monoid. Then all cyclic right S-acts satisfy condition
(E) if and only if S is either {1} or {1,0}.

Proof. Assume that S is a monoid over which all cyclic right S-acts satisfy con-
dition(E) and for z € S let p be the principal right congruence on S generated
by (z,2?). If §/p satisfies condition (E),then = z? or z is right invertible.
Let I be the set of all non-right invertible elements of S. 1f I is empty, then all
elements of S are right invertible. Let A be the principal right congruence on S
generated by (1,z) where z € S. Since S/ also satisfies condition (E), there is
some u € § such that uz = u with uAl. If ull, then z"*+! = z” for some integer
n 2 0 and so it is enough to say that the right invertible element z is 1. Thus
S ={1}.

If I is nonempty, then it is easily seen that I is a right ideal of S. Moreover,
I is proper since 1 ¢ I. Let Ar be Rees right congruence on S with respect to L.
If S/A; satisfies condition (E), then I is the singleton, and if z is in I, then it is
clearly a left zero of S. If J is the set of all left zeros of S, then J is a nonempty
set that is actually a right ideal of S. If 1 € I, then § = {1}. If 1 is not in
I, then J is a proper right ideal of S. Hence we consider the cyclic right S-act
S/A; where A; is Rees right congruence on S with respect to J. If it satisfies
condition (E), then | J |= 1 by the same argument above. If S has only one
left zero, then it is actually a zero of S, denoted by 0 and then this fact means
that all nonzero elements of S are right invertible. Let y be a nonzero element
of S. Since S/p(1,y) satisfies condition (E) by assumption, there is some  in
S such that uy = u with upl and, by the same argument above, y = 1 so that
S = {1,0}.

Conversely if S = {1}, then every right S-act is free so it is trivial that all
cyclic right S-acts A, satisfy condition (E). Now we assume that S = {1,0}. If p
is any right congruence on S, then p is either the universal congruence v or the
identity congruence ¢. If p is the universal congruence v, then | S/p |= 1. Hence
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for any s,t € S, 0s = Ot and Opl. If p is the identity ¢, then S/p is isomorphic
to S and hence it clearly satisfies condition (E). O

Normark[9] proved that all cyclic left S-acts satisfy condition (E) if and only
if all left S-acts satisfy condition (E). Thus, from the above theorem, we have
the following result.

Lemma 5. Let S be a monoid. Then all right S-acts satisfy condition (E) if
and only if § is either {1} or {1,0}.

3. Monoids over which all (cyclic) flat right S-acts satisfy condition

(E)

Although the properties of flatness and condition (E) are incomparable, Liu
showed that all right S-acts that satisfy condition (E) are flat if and only if S is
regular. However it remains an open question to characterize the monoids over
which all cyclic flat right S-acts satisfy condition (E).

Liu|[7] proved that if § is right reversible and if all flat cyclic right S-acts satisfy
condition (P), then E(S) C {0,1} where E(S) is the set of idempotent elements
of S. He showed that, under the additional hypothesis that S is left PP(all
principal left ideals of S are projective), all flat cyclic right S-acts have property
(P) if and only if S is either a right cancellative monoid, or a right cancellative
monoid with zero adjoined. Bulman-Fleming and Normak[4] showed that, over
left PP monoids S, every flat cyclic right act satisfies condition (P) if and only
if every element of S is either right cancellative or right zero. They also showed
that all flat cyclic S-acts are strongly flat if and only if S is right nil. Golchin
and Renshaw, in recent paper, showed that if § = G U N where G is a group
and either N = @ or every element of N is right nil, then every flat cyclic right
S-act satisfies condition (P). Moreover, among periodic monoid S, they proved
that exactly those of the form described above have this feature.

Lemma 6. Let S be a right reversible monoid. If every cyclic flat right S-act
satisfies condition (E), then the set E(S) of idempotents of S is either {1} or

{1,0}.
Proof. Tt is proved by similar arguments that Liu did in [7]. O

Remark. Bulman-Fleming studied flatness properties of cyclic acts S/p where
p = p(s,t) is the principal right congruence on S generated by (s,t) and deter-
mined conditions on S under which all flat or weakly flat acts of this type are
actually strongly flat or projective.

We frequently deal in this paper with cyclic right S-acts (of the form S/p
where p is a right congruence on S) and so we give characterizations of the
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various flatness concepts for such right S-acts which will be used often in this
paper. Note that if A is a left congruence on S and if u € S, then uA denotes
the left congruence on S defined by z(u))y if and only if (zu)A(yu). By A we
denote the equality relation on S.

Lemma 7. Let S be a monoid and let p be o right congruence on §. Then

(1) S/p is free if and only if there exist u,v € S such that vu = 1 and for all
z,y € S,vz = vy & TpY.

(2) S/p is projective if and only if there exists e € S such that epl, and
zpy = ex = ey, forz,y € S.

(8) S/p is strongly flat if and only if for all z,y € S with zpy there exists
u € S such that upl and uz = uy.

(4) S/p satisfies condition (P) if and only if for all z,y € S with zpy there
exist u,v € S such that uplpv and ux = uy.

(6) S/p is flat if and only if for any left congruence A on S and any z,y € S,
if £(pV A)y then there exist u,v € S such that uzdvy,u(pVzA)1, and (pVyl)1.

(6) S/p is weakly flat if and only if the condition of (5) above holds when
A=A,

(7) S/p is principally weakly flat if and only if whenever u, v,z € S and uzpvx
then u(p V zl)v

(8) S/ p is torsion-free if and only if whenever u,v,c € S, c is cancellable, and
ucpve, then upv.

Lemma 8. (/6]) Ife* = e € S and if p = p(we,e) where w € S, then S/p is
flat.

Theorem 2. Let S be a monoid. If all cyclic flat right S-acts satisfy condition
(E), then S is aperiodic. Conversely if S is aperiodic, then the cyclic flat right
S-acts of the form S/p(z,1) where z € S satisfy condition (E).

Proof. Assume that S is a monoid over which all flat cyclic right S-acts satisfy
condition (E) and let z € S. Since the cyclic right S-act S/p(z,1) is clearly flat,
it satisfies condition (E) by assumption and then there is some u in S such that
ux = u with upl. If upl, then there are some nonnegative integers m, n such
that z™u = z". Hence z"t! = z"z = z™(uz) = z™u = z”. Therefore S is
aperiodic. Conversely we assume that S is aperiodic and for s,t € S, sp(z, 1)t.
If sp(z,1)t, then z™s = z™t for some integers m,n > 0 and then z™s = z™t
implies z"s = z"t for some integer r > 0. Also since 1pz", we take u = z". Then
us = ut with upl Thus S/p(z, 1) satisfies condition (E). O

Theorem 3. S is a right reversible monoid over which all cyclic flat right S-acts
satisfy condition (E) if and only if S = {1} or S\ {1} is a nilsemigroup.
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Proof. Assume that S is right reversible and let z € S. If all cyclic flat right S-
acts satisfy condition (E), then z"*! = 2™ for some n € N, and z™ is idempotent
that belongs to the subsemigroup < z >. Also if S is right reversible, then the
set E(S) of idempotents of S is either {1} or {1,0} by lemma 6. Hence the fact
that E(S) = {1} implies that " = 1 with 1z = 1 = z1. If E(S) = {1,0}, then
z"™ =1 implies = 1 and =™ = 0 induces that x is nilpotent with = # 1 since z"
is in E(S). Thus § = {1} or S\ {1} is a nilsemigroup.

If we assume that § = {1} or S\ {1} is a nilsemigroup, then S is clearly right
reversible. Also if S = {1}, then it is trivial that all cyclic flat right S-acts satisfy
condition (E). If S\ {1} is a nilsemigroup, then for every z € S with z # 1, x
is nilpotent. Thus z™ for some n € N is a (right) zero of S so that S is right
nil. Therefore, by Bulman-Fleming and Normak[4], every cyclic flat right S-act
is strongly flat(clearly it satisfies condition (E)). O
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