• Title/Summary/Keyword: Monohull

Search Result 14, Processing Time 0.018 seconds

A Study on the Appendages Optimization of a High Speed Semi-Planing Monohull using DOE (실험 계획법을 이용한 고속 반활주선의 부가물 최적화)

  • Seo, Kwanhee;Kim, Hyuncheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.184-192
    • /
    • 2014
  • The resistance of a high speed monohull can be dramatically increased at the high speed range due to the severe stern trim, spray formation and hull bottom pressure irregularity etc. In order to avoid these demerits associated with this resistance increase, various appendages such as the stern wedge, vertical wedge, stern flap, spray strip etc. have been studied. Each of appendage can control the trim angle and/or improve the resistance performance. If these appendages are combined for finding the maximal resistance reduction, there are enormous combination selections. This paper presents the DOE(Design of experiment) using an orthogonal array in order to decrease the model tests finding the optimum appendage combination. And we evaluate that the method introduced in this paper makes the optimal combination of appendages efficient and time-saving by applying to high speed semi-planing monohull. Here, the maximum speed and the least fuel expense are adopted as the decision criteria.

Construction of NURBS Model for Preliminary High-Speed Monohull Design Based on Parametric Approach (파라메트릭 기법을 고속 단동선의 NURBS 모델링)

  • Nam Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.82-87
    • /
    • 2006
  • An approach to model a high-speed monohull vessel is introduced. The high-speed monohull form belonging to the category of multihull is drawing new attention, due to the rapidly growing trend of fast passenger ships and military purpose. Multihull forms are much thinner in their overall shape, compared to those of the conventional commercial vessels. Moreover, the parent hull forms are not readily obtainable when a new design is intended, which makes it hard to perform various technical calculations in terms of hull optimization, hydrodynamic computation, structural design, and so forth. In this paper, a parametric technique is used to design a high-speed hull form. To model a hull form, NURBS (Non Uniform Rational B-Spline) representation is used. The goal of research is to provide a fast and convenient tool to design an initial hull form with fewer parameters available in the early design stage. The technique employed in this paper will be applied to the design of multihull forms, such as catamaran, trimaran, and semi-swath.

Comparison of Resistance for Three 10,000 Ton Ships: a Monohull, a Catamaran and a Trimaran (10,000톤의 단동선, 쌍동선, 삼동선 저항 비교)

  • Choi, Yeong-Dal;Leem, Hyo-Kwan;Lee, Kwi-Joo;Sun, Jae-Ouk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.71-76
    • /
    • 2006
  • Preliminary conceptual design of hulls is developed and a theoretical evaluation study performed for the comparison of the hull concepts. Systematic variation of the side hull location is carried out to find an optimum position of side hulls for a trimaran by CFD computation. In order to compare computed results, the model test of trimaran was carried out. Shallow water effect is considered due to the route which has critical water depth of 20m for the design speed and investigated on the condition of different speeds and water depth by the numerical computations.

  • PDF

Hydrodynamic modeling of semi-planing hulls with air cavities

  • Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.500-508
    • /
    • 2015
  • High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

Theoretical Prediction of Vertical Motion of Planing Monohull in Regular Head Waves - Improvement of Zarnick's Nonlinear Strip Method (선수 규칙파 중 단동 활주선의 연직면 거동 추정 - Zarnick 비선형 스트립 방법의 개선)

  • Zhang, Yang;Yum, Deuk-Joon;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • In order to predict the motions of a planing hull in waves, it is necessary to accurately estimate the force components acting on the hull such as the hydrodynamic force, buoyancy, and friction, as well as the wave exciting force. In particular, based on strip theory, hydrodynamic forces can be estimated by the summation of the forces acting on each cross-section of the hull. A non-linear strip method for planing hulls was mathematically developed by Zarnick, and his formula has been used to predict the vertical motions of prismatic planing hulls in regular waves. In this study, several improvements were added to Zarnick's formula to predict the vertical motions of warped planing hulls. Based on calm water model test results, the buoyancy force and moment correction coefficients were modified. Further improvements were made in the pile-up correction. Pile-up correction factors were changed according to variations of the deadrise angles using the results found in previous research. Using the same hull form, captive model tests were carried out in other recent research, and the results were compared with the present calculation results. The comparison showed reasonably good agreements between the model tests and present calculations.

Ultimate Transverse Bending Strength Analysis of a SWATH Ship (SWATH선의 최종 횡굽힘강도 해석)

  • 박치모
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

Examination of the structural design for SWATH ship (최소 선면쌍동선 구조설계에 대한 고찰)

  • 박명규;신영식
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.1
    • /
    • pp.95-106
    • /
    • 1995
  • The small-waterplane-area-twin-hull(SWATH) ship has been recognized as a promising high performance ship because of her superior seakeeping characteristics and large deck area for various operations compared to the conventional monohull ship. significant advances in analytical technics for the prediction of the ship motions, wave loads and structural responses, structural fatigue and its prediction, and hull vibration for ship motions, wave loads and structural responses, structural fatigue and its prediction, and hull vibration for SWATH ship have been much developed during the last twenty years. Based on these developments in technology an integrated computational procedures for prediction wave loads and structural responses can be used to get a accurate results. But the major problem of SWATH ship's structural design is the accurate prediction of structural responses by the maximum critical loads likely to be experienced during the life of SWATH. To get a easier and safer computational procedures and the analytical approach for determining the accurate structural responses, a case study has been presented through the project experienced.

  • PDF

미래의 선박에 대하여

  • 박태인
    • Journal of the KSME
    • /
    • v.32 no.9
    • /
    • pp.777-787
    • /
    • 1992
  • 21세기를 향한 여객선의 추세는 초고속화, 대형화(국제화), 성에너지화, 우수한 내항성능, 저진동 및 저소음 등을 갖춘 선박을 요구하고 있다. 이런 관점에서 초고속선으로 속력에 한계가 있는 단동선 (monohull), 쌍동배수량형(catamaran), 최소수면 쌍동선(SWATH)의 선형과 대형화가 곤란한 수중익선 (hydrofoil)보다는 속력면에서 유리하고 대형화가 가능한 표면 효과선 또는 앞 에서 언급한 고속 선형의 장점을 복합시킨 각종 복합선형이 개발되리라고 생각한다. 그러나 복 합선형이 실용화되기까지는 경제적인 건조비, 운항자세 제어 시스템, 신소재를 이용한 경구조화, 진동과 소음, 추진 시스템 등에 대한 요소 기술의 개발이 선행되어야 한다. 끝으로 선박의 속력이 50노트가 넘는 초고속선을 설계, 제작, 운항을 하는데 있어 그 개념이 조선공학에서 다루어지는 통상 선박기술의 연장이라고 그 영역을 정리하는 경향이 있다. 이 글을 정리하면서 느낀 것이 지만 해상교통 수단의 초고속화가 이루어질수록 그 지지기술 및 자세제어기술 등에 있어서는 항공기 기술에 가까워짐을 알게 되었다. 그러한 뜻에서 초고속선 개발에는 항공기 기술에서 얻 어진 노하우를 잘 활용하는 일도 중요하리라 생각된다.

  • PDF

The overall motion sickness incidence applied to catamarans

  • Piscopo, Vincenzo;Scamardella, Antonio
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.655-669
    • /
    • 2015
  • The Overall Motion Sickness Incidence is applied to the hull form optimization of a wave piercing high-speed catamaran vessel. Parametric hull modelling is applied to generate two families of derived hull forms, the former varying the prismatic coefficient and the position of longitudinal centre of buoyancy, the latter instead the demi-hull separation. Several heading angles are analysed in a seaway, considering all combinations of significant wave height and zero-crossing period under two operating scenarios. The optimum hull is generated and vertical accelerations at some critical points on main deck are compared with the parent ones. Finally a comparative analysis with the results obtained for a similarly sized monohull passenger ship is carried out, in order to quantify, by the OMSI, the relative goodness in terms of wellness onboard of monohulls and catamarans, as a function of sea states and operating scenarios.

Numerical and experimental analysis of hydroelastic responses of a high-speed trimaran in oblique irregular waves

  • Chen, Zhanyang;Gui, Hongbin;Dong, Pingsha;Yu, Changli
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.409-421
    • /
    • 2019
  • Investigation of hydroelastic responses of high-speed vessels in irregular sea state is of major interest in naval applications. A three dimensional nonlinear time-domain hydroelastic method in oblique irregular waves is developed, in which the nonlinear hydrostatic restoring force caused by instantaneous wetted surface and slamming force are considered. In order to solve the two technical problems caused by irregular sea state, the time-domain retardation function and Proportional, Integral and Derivative (PID) autopilot model are applied respectively. Besides, segmented model tests of a high-speed trimaran in oblique waves are performed. An oblique wave testing system for trimarans is designed and assembled. The measured results of main hull and cross-decks are analyzed, and the differences in distribution of load responses between trimarans and monohull ships are discussed. Finally, from the comparisons, it is confirmed that the present concept for dealing with nonlinear hydroelastic responses of ships in oblique irregular waves is reliable and accurate.