• 제목/요약/키워드: Monocyte-derived dendritic cell

검색결과 14건 처리시간 0.018초

Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation

  • Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.371-377
    • /
    • 2017
  • Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive ($TRAP^+$) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar ($H^+$) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.

Human $CD103^+$ dendritic cells promote the differentiation of Porphyromonas gingivalis heat shock protein peptide-specific regulatory T cells

  • Kim, Myung-Jin;Jeong, Eui-Kyong;Kwon, Eun-Young;Joo, Ji-Young;Lee, Ju-Youn;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • 제44권5호
    • /
    • pp.235-241
    • /
    • 2014
  • Purpose: Regulatory T cells (Tregs), expressing CD4 and CD25 as well as Foxp3, are known to play a pivotal role in immunoregulatory function in autoimmune diseases, cancers, and graft rejection. Dendritic cells (DCs) are considered the major antigen-presenting cells (APCs) for initiating these T-cell immune responses, of which $CD103^+$ DCs are derived from precursor human peripheral blood mononuclear cells (PBMCs). The aim of the present study was to evaluate the capacity of these PBMC-derived $CD103^+$ DCs to promote the differentiation of antigen-specific Tregs. Methods: Monocyte-derived DCs were induced from $CD14^+$ monocytes from the PBMCs of 10 healthy subjects. Once the $CD103^+$ DCs were purified, the cell population was enriched by adding retinoic acid (RA). Peptide numbers 14 and 19 of Porphyromonas gingivalis heat shock protein 60 (HSP60) were synthesized to pulse $CD103^+$ DCs as a tool for presenting the peptide antigens to stimulate $CD3^+$ T cells that were isolated from human PBMC. Exogenous interleukin 2 was added as a coculture supplement. The antigen-specific T-cell lines established were phenotypically identified for their expression of CD4, CD25, or Foxp3. Results: When PBMCs were used as APCs, they demonstrated only a marginal capacity to stimulate peptide-specific Tregs, whereas $CD103^+$ DCs showed a potent antigen presenting capability to promote the peptide-specific Tregs, especially for peptide 14. RA enhanced the conversion of $CD103^+$ DCs, which paralleled the antigen-specific Treg-stimulating effect, though the differences failed to reach statistical significance. Conclusions: We demonstrated that $CD103^+$ DCs can promote antigen-specific Tregs from naive T cells, when used as APCs for an epitope peptide from P. gingivalis HSP60. RA was an effective reagent that induces mature DCs with the typical phenotypic expression of CD103 that demonstrated the functional capability to promote antigen-specific Tregs.

Orientia tsutsugamushi Infection Induces $CD4^+$ T Cell Activation via Human Dendritic Cell Activity

  • Chu, Hyuk;Park, Sung-Moo;Cheon, In Su;Park, Mi-Yeoun;Shim, Byoung-Shik;Gil, Byoung-Cheol;Jeung, Woon Hee;Hwang, Kyu-Jam;Song, Ki-Duk;Hong, Kee-Jong;Song, Manki;Jeong, Hang-Jin;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권8호
    • /
    • pp.1159-1166
    • /
    • 2013
  • Orientia tsutsugamushi, a gram-negative bacterium, causes severe acute febrile illness in humans. Despite this danger, the route of infection, infectivity, and protective mechanisms of the host's immune response to O. tsutsugamushi are unclear. Dendritic cells (DCs) are one of the most important cell types in bridging the innate and adaptive immune responses. In this study, we observed that O. tsutsugamushi infects and replicates in monocyte-derived DCs (MODCs). During infection and replication, the expressions of the cytokines IL-12 and TNF-${\alpha}$, as well as the co-stimulatory molecules CD80, CD83, CD86, and CD40, were increased in MODCs. When O. tsutsugamushi-treated MODCs were co-cultured with autologous $CD4^+$ T cells, they enhanced production of IFN-${\gamma}$, a major Th1 cytokine. Collectively, our results show that O. tsutsugamushi can replicate in MODCs and can simultaneously induce MODC maturation and increase proinflammatory cytokine levels in MODCs that subsequently activate $CD4^+$ T cells.

Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells

  • Lee, Yeo Jin;Son, Young Min;Gu, Min Jeong;Song, Ki-Duk;Park, Sung-Moo;Song, Hyo Jin;Kang, Jae Sung;Woo, Jong Soo;Jung, Jee Hyung;Yang, Deok-Chun;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.29-37
    • /
    • 2015
  • Background: Panax ginseng (i.e., ginseng) root is extensively used in traditional oriental medicine. It is a modern pharmaceutical reagent for preventing various human diseases such as cancer. Ginsenosidesd-the major active components of ginsengd-exhibit immunomodulatory effects. However, the mechanism and function underlying such effects are not fully elucidated, especially in human monocytes and dendritic cells (DCs). Methods: We investigated the immunomodulatory effect of ginsenosides from Panax ginseng root on $CD14^+$ monocytes purified from human adult peripheral blood mononuclear cells (PBMCs) and on their differentiation into DCs that affect $CD4^+$ T cell activity. Results: After treatment with ginsenoside fractions, monocyte levels of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-10 increased through phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK). After treatment with ginsenoside fractions, TNF-${\alpha}$ production and phosphorylation of ERK1/2 and JNK decreased in lipopolysaccharide (LPS)-sensitized monocytes.We confirmed that DCs derived from $CD14^+$ monocytes in the presence of ginsenoside fractions (Gin-DCs) contained decreased levels of the costimulatory molecules CD80 and CD86. The expression of these costimulatory molecules decreased in LPS-treated DCs exposed to ginsenoside fractions, compared to their expression in LPS-treated DCs in the absence of ginsenoside fractions. Furthermore, LPS-treated Gin-DCs could not induce proliferation and interferon gamma (IFN-${\gamma}$) production by $CD4^+$ T cells with the coculture of Gin-DCs with $CD4^+$ T cells. Conclusion: These results suggest that ginsenoside fractions from the ginseng root suppress cytokine production and maturation of LPS-treated DCs and downregulate $CD4^+$ T cells.